
ANR Project ECLIPSES

Elliptic Curve Leakage-Immune
Processing for Secure Embedded

Systems

D2.1

Promising Algorithms for Pairing
Computations

Contributor(s)

Matthieu Rivain – CryptoExperts

Due date of deliverable: T0+6
Actual submission date: November 4, 2010
ECLIPSES partner in Charge: CryptoExperts

Confidentiality level: Restricted to ECLIPSES Release: 1.0

History

Version Date Author Modification
1.00 09/09/2010 Matthieu Rivain Initial version
1.01 29/10/2010 Matthieu Rivain Minor corrections and addition of Section 6

ECLIPSES Partners

Start date of project: 2010, January 21 Duration: 3 years

The information in this document is provided as is, and no warranty is given or
implied that the information is fit for any particular purpose. The user thereof uses
the information at its sole risk and liability.

ii

iii

Contents

1 Introduction 1

2 Mathematical background on elliptic curves 2
2.1 Basic definition . 2
2.2 Addition law . 3
2.3 Group structure and r-torsion . 6
2.4 Supersingular vs. ordinary curves 7
2.5 Twist of an elliptic curve . 8
2.6 Frobenius endomorphism and trace map 10
2.7 Function field and divisors . 12

3 Pairings 15
3.1 Basic definition . 15
3.2 The Weil Pairing . 16
3.3 The Tate Pairing . 17
3.4 Pairings over cyclic subgroups 19
3.5 Pairing-friendly elliptic curves 20

4 Promising pairing-based protocols 21
4.1 Hardness assumptions . 21
4.2 Boneh-Franklin identity-based encryption scheme 23
4.3 Boneh-Lynn-Shacham short signature scheme 24
4.4 Joux one-round tripartite key agreement 26

5 Pairing computation algorithms 28
5.1 Miller’s algorithm . 28
5.2 Extension field arithmetic . 31
5.3 Tate pairing optimizations . 34
5.4 The Eta and Ate pairings . 38
5.5 Generalizations and optimal pairings 41

6 Summary and recommendations 43

iv

D2.1 — Promising Algorithms for Pairing Computations 1

1 Introduction

The purpose of this document is to give an overview of promising algorithms
for pairing computation in cryptography. In a first place, we introduce some math-
ematical background on elliptic curves which is necessary to the understanding of
pairings used in cryptography. Then we formally define what is a pairing and we
recall the different types of pairing consider in cryptography. We describe the Weil
and the Tate pairings, and we focus on restrictions of these pairings such as used
in practice. Afterwards we address pairing-based cryptography: we recall usual
hardness assumptions and we describe three different pairing-based cryptographic
protocols. Finally, we review efficient algorithms for the computation of pairings,
including Miller’s algorithm, the extension field arithmetic, and several optimiza-
tions and variants of the Tate pairing.

2 ANR Project ECLIPSES — Restricted to ECLIPSES

2 Mathematical background on elliptic curves

In this section, we give necessary mathematical background on elliptic curves
for understanding pairing-based protocols and pairing computation algorithms. We
will restrict our description to elliptic curves over finite fields which is sufficient
in the context of cryptography. We use basic notions of algebra such as (cyclic)
group, finite field, field characteristic, field extension, etc. Background about these
notions can be found in [LN97]. The reader is further referred to [BIPV10] for
details about elliptic curve arithmetic and elliptic curve cryptography.

2.1 Basic definition

Definition 2.1 (Elliptic Curve). An elliptic curve E over a finite field Fq of char-
acteristic p > 3 is defined by the following short Weierstrass equation:

E : y2 = x3 + ax+ b (1)

where a, b ∈ Fq and ∆ = −16(4a3 + 27b2) 6= 0 (∆ is called discriminant of E).
For every extension K of Fq, the K-rational points of E is the set E(K) of points
(x, y) ∈ K ×K satisfying (1) together with the point at infinity denoted O. The
points in E(Fq) are simply called the rational points of E.

In the following, we will denote by pE ∈ Fq[x, y] the polynomial in the equa-
tion of E:

pE(x, y) = x3 + ax+ b− y2 ,

which is such that P ∈ E(K)\{O} if and only if pE(P) = 0.

Remark. This definition can be extended to finite fields of characteristic p ∈ {2, 3};
only (1) and ∆ change depending on whether p = 2 or p = 3 and on whether the
elliptic curve is ordinary or supersingular (cf. Section 2.4). For completeness, we
summarize the different possibilities in Table 1.

Table 1: Equations and discriminants of elliptic curve over Fpm .

p ordinary curves supersingular curves
2 E : y2 + xy = x3 + ax2 + b E : y2 + cy = x3 + ax+ b

∆ = b ∆ = c4

3 E : y2 + xy = x3 + ax2 + b E : y2 + cy = x3 + ax+ b
∆ = −a3b ∆ = −a3

E : y2 = x3 + ax+ b
> 3 ∆ = −16(4a3 + 27b2)

(Definition 2.1)

D2.1 — Promising Algorithms for Pairing Computations 3

Figure 1: Elliptic curves over R [Wik].

Although we only focus on elliptic curves over finite fields they can be defined
over any field. As an illustration, Fig. 1 represents the graphs of two different
elliptic curves over R.

It is clear from Definition 2.1 that for every pair of natural integers m1 < m2

we have E(Fqm1) ⊂ E(Fqm2) (as we have Fqm1 ⊂ Fqm2). Let us recall that the
algebraic closure of a finite field Fq, denoted Fq, is the field containing all the
extensions of Fq, that is Fq =

⋃∞
n=1 Fqn . Then we naturally have

E
(
Fq
)

=
∞⋃
n=1

E(Fqn) .

The next theorem gives an interval for the number of rational points of an
elliptic curve.

Theorem 2.1 (Hasse). Let E be an elliptic curve defined over Fq. Then we have
#E(Fq) = q + 1− t where t is called the trace of E and satisfies:

−2
√
q ≤ t ≤ 2

√
q . (2)

Since E is defined over Fq, E is also defined over any extension Fqm of Fq,
and we can deduce from the above theorem that for every m we have:

qm + 1− 2qm/2 ≤ #E(Fqm) ≤ qm + 1 + 2qm/2 .

2.2 Addition law

Let E be an elliptic curve defined over Fq. For every extension K of Fq, the
set of K-rational points of E can be provided with an addition law:

E(K)× E(K) −→ E(K)

(P,Q) 7−→ P +Q

4 ANR Project ECLIPSES — Restricted to ECLIPSES

which is associative and commutative, has identity elementO and, for which every
P ∈ E(K), has an inverse element −P ∈ E(K). This implies that (E(K),+,O)
has a finite Abelian group structure.

The addition law is given by the so-called chord-and-tangent rule. Geometri-
cally, this rule says that drawing a line which intersects the curve at several points
implies that the sum of these points equals the identity O. The points are counted
with multiplicity meaning that if the line is a tangent of E at P then it intersects the
curve twice at P . Four different cases occur:

1. The line intersects the curve at three distinct points P , Q and R. We have
P +Q+R = O.

2. The line intersects the curve at P and is tangent to the curve at Q. We have
P +Q+Q = O.

3. The line intersects the curve at two distinct points P and Q. We have P +
Q = O.

4. The line is tangent to the curve at a point P and does not further intersect the
curve. We have P + P = O.

Figure 2: The chord-and-tangent rule [Wik].

These different cases are illustrated in Fig. 2. According to this rule, we deduce
that the inverse of a point P = (x1, y1) is simply its reflection by the x-axis i.e.
−P = (x1,−y1) (see case 3). Stating that any line intersects the curve in three
points, we obtain a geometric interpretation of the point at infinity: it is the point
where all the vertical lines intersect (i.e. at infinity). We then have that every
vertical line intersects the curve in P , −P and O which is consistent with P −
P + O = O (see case 3 and 4). Note that case 4 corresponds to P = −P or
equivalently P + P = O, that is P is a point of order 2 of E(K).

The chord-and-tangent rule also enables to efficiently compute the sum of two
points P and Q. Observe for instance in case 1 that P + Q + R = O implies
P + Q = −R. Therefore, adding two points P and Q (when P 6= O, Q 6= O
and P 6= −Q) consists in drawing a line through them (or the tangent of E at
P if P = Q) and taking P + Q as the reflection by the x-axis of the third point
intersected by the line. From this principle, we can derive addition and doubling
formulae as detailed hereafter.

Adding two points. Let P = (x1, y1) and Q = (x2, y2) with P 6= Q and P,Q 6=

D2.1 — Promising Algorithms for Pairing Computations 5

O. Let
L : y = λx+ β (3)

be the line through P and Q. We have:

λ =
y1 − y2

x1 − x2
and β = y1 − λx1 . (4)

The intersection of L and E is the set of points (x, y) ∈ K × K satisfying both
(3) and (1). In particular, the x-coordinates of those points satisfies (λx + β)2 =
x3 + ax+ b which gives:

p(x) := x3 − λ2x2 − 2βλx+ ax+ b− β2 = 0 . (5)

Since P,Q ∈ L∩E, x1 and x2 are both solution of the previous equation (i.e. they
are roots of p) hence we deduce:

p(x) = (x− x1)(x− x2)(x− x3) (6)

where x3 is the third root of p. Defining y3 = −λx3 − β, we get E ∩ L =
{P,Q, (x3,−y3)} and P + Q = (x3, y3). Finally, we can efficiently compute
P +Q, since from (5) and (6) we have x1 + x2 + x3 = λ2 which gives:

x3 = λ2 − x1 − x2 =

(
y1 − y2

x1 − x2

)2

− x1 − x2 , (7)

and:

y3 = −λx3 − β =

(
y1 − y2

x1 − x2

)
(x3 − x1)− y1 . (8)

Doubling a point. When P = Q 6= O the sum P + Q = [2]P is computed
similarly than when P 6= Q except that we take the tangent of E at P instead of
the line through P and Q. The slope of this tangent satisfies:

λ = −
∂pE
∂x (x1, y1)
∂pE
∂y (x1, y1)

=
3x2

1 + a

2y1
, (9)

which gives:

x3 =

(
3x2

1 + a

2y1

)2

− 2x1 , (10)

and:

y3 =

(
3x2

1 + a

2y1

)
(x3 − x1)− y1 . (11)

It is clear that the chord-and-tangent addition law is commutative i.e. P + Q =
Q+ P (whatever the order of P and Q around the ‘+’, the third points intersected
by the line through P and Q is always the same). The associativity of the law is
more complicated to show. The interested reader is referred to [Sil86, Joy95] for a
demonstration.

6 ANR Project ECLIPSES — Restricted to ECLIPSES

2.3 Group structure and r-torsion

In the following, we will denote by [k]P the scalar multiplication of a point P
by an integer k which is defined as:

[k]P = P + P + · · ·+ P︸ ︷︷ ︸
k times

.

Let us recall that the cardinal of a finite Abelian group (G,+,O) is also called
its order, denoted #G, and that the order of an element P ∈ G is the minimum
positive integer n such that [n]P = O. Let us further recall that, every finite
Abelian group G is isomorphic to Zk1 ⊕ Zk2 ⊕ · · · ⊕ Zkm for some ki’s satisfying∏
i ki = #G and 1 < k1 | k2 | · · · | km (where Zk denotes the additive group

(Z/kZ,+, 0) of integers modulo k and ‘⊕’ denotes the direct sum operator). This
implies that every element in G can be expressed as a linear combination of m
distinct elements P1, P2, . . . , Pm of G having order k1, k2, . . . , km respectively.
As stated in the next proposition, the structure of (E(Fq),+,O) can be further
specified.

Proposition 2.2. Let E be an elliptic curve defined over Fq, then:

E(Fq) ' Zn1 ⊕ Zn2

where n1 | n2 and n1 | (q − 1).

If E is defined over Fq, it is also defined over any extension Fqm and we can
deduce that for every m ∈ N we have E(Fqm) ' Zn′1 ⊕ Zn′2 where n′1 | n′2 and
n′1 | (qm − 1).

For cryptographic applications and in particular for pairing-based cryptogra-
phy, we shall make use of a subgroup of E

(
Fq
)

which, for some integer r, is
known as the r-torsion of E.

Definition 2.2 (r-torsion). Let E be an elliptic curve defined over a field Fq. A
point P of E is said to be of r-torsion if it satisfies [r]P = O (i.e. the order of
P divides r). Let K be an extension of Fq, the group of r-torsion points in E(K)
is denoted E(K)[r]. The group E

(
Fq
)
[r] is simply denoted E[r] and is called the

r-torsion of E.

The next theorem gives the group structure of the r-torsion.

Theorem 2.3 (Cor. III.6.4 [Sil86]). Let E be an elliptic curve defined over Fq and
let r ∈ N∗. If gcd(r, q) = 1, then E[r] ' Zr ⊕ Zr. Otherwise we have either
E[pe] ' Zpe for every e ≥ 1, or E[pe] ' {O} for every e ≥ 1.

A natural question to ask while working with the r-torsion of an elliptic curve
is: which extension K of Fq must be considered to get the whole r-torsion of E[r]
included in E(K)? This motivates the notion of embedding degree.

Let E be an elliptic curve defined over Fq and let r be an integer such that E
has Fq-rational points of order r and gcd(r, q) = 1. The embedding degree of E

D2.1 — Promising Algorithms for Pairing Computations 7

with respect to r is the extension degree [Fq(µr) : Fq] where µr is the set of rth
roots of unity in Fq. Then we have the equivalence:

Fq(µr) = Fqk ⇐⇒ r | qk − 1

from which we deduce the following equivalent definition.

Definition 2.3 (Embedding degree). LetE be an elliptic curve defined over a finite
field Fq and let r be an integer such that r | #E(Fq) and gcd(r, q) = 1. The
embedding degree of E(Fq) with respect to r is the least positive integer k such
that r | qk − 1.

Proposition 2.4 ([BK98]). Let E be an elliptic curve defined over a finite field Fq
and let r be a prime such that r | #E(Fq), gcd(r, q) = 1, and r - q − 1. Then
E[r] ⊂ E(Fqk) if and only if r | qk − 1.

Proposition 2.4 implies that if the embedding degree k of E with respect to
some prime r is greater than 1, then Fqk is the smallest extension of Fq such that
E(Fqk) contains the entire r-torsion of E.

To summarize and assuming r to be prime and co-prime to q, we have

E[r] = E(Fqk)[r] ' Zr ⊕ Zr .

Namely, (i) the points of E[r] have coordinates belonging to Fqk , and (ii) the r-
torsion is a 2-dimensional vector space over Fr. Every point P ∈ E[r] generate
a proper subgroup/subspace 〈P 〉 of E[r] which is a cyclic group of order r. As
every subgroup contains r points and as all the subgroups have one single point in
common (which is O), there exist r + 1 subgroups. An example is the subgroup
of rational r-torsion points E(Fq)[r]. Eventually, any (P,Q) ∈ E[r] × E[r] with
P /∈ 〈Q〉 (or equivalently Q /∈ 〈P 〉) is a basis of E[r] and every point R ∈ E[r]
can be expressed as R = aP + bQ where a, b ∈ Zr.

2.4 Supersingular vs. ordinary curves

Definition 2.4. Let E be an elliptic curve defined over Fq of characteristic p. E is
said to be supersingular if it satisfies #E(Fq) ≡ 1 mod p (i.e. the trace of E is a
multiple of p). Otherwise E is said to be ordinary.

In other words, an elliptic curve E defined over Fq is supersingular if and only
if its trace t = q + 1−#E(Fq) is a multiple of the characteristic of Fq.

One of the main feature of supersingular elliptic curves which makes them in-
teresting for pairing-based cryptography is that they have small embedding degrees
(≤ 6). As we will see later, this feature makes them pairing-friendly. We summa-
rize in Table 2, all possibilities for the embedding degree k (with respect to any
r|#E(Fq)), the cardinal q of the base field, the trace t, the number of Fq-rational
points and the number of Fqk -rational points of a supersingular elliptic curve de-
fined over Fq (p denotes any prime number and n any positive integer).

8 ANR Project ECLIPSES — Restricted to ECLIPSES

Table 2: Possible parameters of supersingular elliptic curves.

k q t #E(Fq) #E(Fqk)

1 p2n ±2
√
q q ∓ 2

√
q + 1 (q ∓ 1)2

2 p2n+1 0 q + 1 (q + 1)2

2 p2n (p 6≡ 1[4]) 0 q + 1 (q + 1)2

3 p2n (p 6≡ 1[3]) ±√q q ∓√q + 1 (q3/2 ∓ 1)2

4 22n+1 ±
√

2q q ∓
√

2q + 1 (q2 + 1)2

6 32n+1 ±
√

3q q ∓
√

2q + 1 (q3 + 1)2

It can be noticed from Table 2 that #E(Fqk) is always a square. We actually
have E(Fqk) ' Z√N × Z√N where N = #E(Fqk).

Finally, we introduce the notion of distortion map which is useful in cryptog-
raphy.

Definition 2.5 (distortion map). Let E be an elliptic curve defined over Fq. A
distortion map of E is an endomorphism E

(
Fq
)
→ E

(
Fq
)

which maps a rational
point (i.e. a point in E(Fq)) to a non-rational point (i.e. a point in E

(
Fq
)
\E(Fq)).

Theorem 2.5. Let E be an elliptic curve defined over Fq. Then E has a distortion
map if and only if E is supersingular.

The necessity has been proven in [Ver01, Ver04]. In [GR04], the authors
show how to construct an efficiently computable distortion map mapping a point of
E(Fq)[r] to a non-rational point of E(Fqk)[r] (where k is the embedding degree of
E w.r.t. r). In particular, this result implies the sufficiency of the previous theorem
statement.

As we will see later, an efficiently computable isomorphism

φ : E(Fq)[r] −→ G ⊂ E(Fqk)[r]\E(Fq)[r]

is useful to construct a symmetric pairing over E(Fq)[r]. If E is a supersingular
elliptic curve, then such an isomorphism can be taken as the restriction of a dis-
tortion map to E(Fq)[r]. If E is ordinary, no such efficient isomorphism is known
and it is currently believed that no such efficient isomorphism exists.

2.5 Twist of an elliptic curve

Let E : y2 = x3 +ax+ b be an elliptic curve defined over Fq (of characteristic
greater than 3). The j-invariant of E is defined as:

j(E) = 1728
4a3

4a3 + 27b2
.

The j-invariant is a key notion in elliptic curve arithmetic as it can be shown that
an elliptic curve E′ is isomorphic to E, namely there exits an isomorphism φ :
E′
(
Fq
)
→ E

(
Fq
)
, if and only if j(E′) = j(E). By definition of the j-invariant,

D2.1 — Promising Algorithms for Pairing Computations 9

one can indeed check that if j(E′) = j(E), then there exits α ∈ Fq such that E′

satisfies:
E′ : y2 = x3 +

a

α2
x+

b

α3
. (12)

Then we have (x, y) ∈ E′
(
Fq
)

if and only if (αx, α3/2y) ∈ E
(
Fq
)
. In other

words, E′ is isomorphic to E by:

φ : E′
(
Fq
)
→ E

(
Fq
)

: (x, y) 7→ (αx, α3/2y) . (13)

In the sequel, we shall consider the following equivalence relation: E ∼ E′ if
and only if there exists an isomorphism between E and E′, which is defined over
Fq. If two elliptic curves are equivalent then we haveE′(Fqm) ' E(Fqm) for every
m (and in particular #E(Fqm) = #E′(Fqm)). Namely E and E′ have the exact
same group structure over any extension of Fq.

In (13), if α is a square over Fq then φ is defined over Fq and E ∼ E′. On the
other hand, if α is a non-square over Fq then α3/2 lies in Fq2 but not in Fq. In that
case φ is not defined over Fq, it is only defined over even-degree extensions of Fq.
E′ is then called the twist of E (of degree 2) and E′(Fqm) ' E(Fqm) if and only
if m is even.

Every elliptic curve has a twist of degree 2 whose equation can be obtained
from (12) by picking any α ∈ Fq which is not a square (such an α always exists
as q is odd). It can then be shown that all degree-2 twists of E are isomorphic one
of each other over Fq. This implies that there exists one single degree-2 twist of an
elliptic curve E modulo ∼.

More generally, we have the following definition of a twist of any degree.

Definition 2.6. Let E and E′ be two elliptic curves defined over Fq. E′ is called
a twist of degree d of E if there exists an isomorphism φd : E′

(
Fq
)
→ E

(
Fq
)

defined over Fqd and d is minimal.

Analogously to the degree-2 case, a twist E′ of E of degree d is such that
E′(Fqm) ' E(Fqm) if and only if d | m. The following proposition gives the
number of twists of an elliptic curve (including itself as twist of degree 1).

Proposition 2.6 (Prop. X.5.4 [Sil86]). Let E be an elliptic curve defined over Fq
(of characteristic greater than 3). The set of twists of E is canonically isomorphic
to F∗q/(F∗q)d where:

d =

6 if j(E) = 0 ,
4 if j(E) = 1728 ,
2 otherwise.

Note that if gcd(d, q − 1) = e then F∗q/(F∗q)d = F∗q/(F∗q)e contains e distinct
classes and the set µe of eth roots of unity is included in F∗q . Further note that
x 7→ x(q−1)/e defines a group isomorphism from F∗q/(F∗q)e to µe (in particular,
F∗q/(F∗q)e is isomorphic to Ze). In the following we shall assume 1 that d divides
q − 1, which implies F∗q/(F∗q)d ' Zd and µd ⊂ F∗q .

1. If d does not divide q− 1, then d can be replaced by e = gcd(d, q− 1) and the results remain
the same.

10 ANR Project ECLIPSES — Restricted to ECLIPSES

Let α ∈ F∗q and denote α ∈ F∗q/(F∗q)d the class of α (i.e. for every β ∈ α,
there exists λ ∈ F∗q such that β = αλd). According to Proposition 1, every class
α can be associated to one and one single twist of E modulo ∼ (the elliptic curve
E being itself associated to the identity class 1). To see this, we can proceed as for
the degree-2 case detailed above. Let ξ ∈ Fqd be a dth root of α. Then the elliptic
curve E′ given by:

E′ : y2 = x3 +
a

ξ4
x+

b

ξ6
. (14)

is a twist of E with the following isomorphism:

[ξ] : E′(Fq
)
→ E(Fq

)
: (x, y) 7→ (ξ2x, ξ3y) .

Note that for d = 2, we retrieve the twist of degree 2 given by (12) and [ξ] equals
the isomorphism given in (13). Also note that, accordingly to Proposition 2.6, we
can verify that if E′ is a twist of degree 6 then a = 0 (otherwise E′ would not
be defined over Fq as ξ4 /∈ Fq), and that if E′ is a twist of degree 4 then b = 0
(otherwise E′ would not be defined over Fq as ξ6 /∈ Fq).

Let us now show that a class α yields one and only one twist modulo ∼ what-
ever the choice of α ∈ α and of ξ ∈ d

√
α. On the one hand, choosing two different

dth roots ξ1 and ξ2 of α yield the same twist modulo ∼ as ξd1 = ξd2 = α implies
that ξ1 = ξ2ζ where ζ ∈ µd ⊂ Fq. So the isomorphism (x, y) 7→ (ζ2x, ζ3y) maps
the curve obtained with ξ1 to the one obtained with ξ2 and it is defined over Fq.
On the other hand, any dth root of α′ ∈ α yields the same twist modulo ∼ than
a dth root of α since there exists λ ∈ F∗q such that α′ = αλd. This implies that
for every dth root ξ′ of α′ there exists a dth root ξ of α such that ξ′ = λξ and
(x, y) 7→ (λ2x, λ3y) defines an isomorphism over Fq between the two curves.

We further have the interesting property that the degree of E′ is the order of
α in F∗q/(F∗q)d (or equivalently the order of α(q−1)/d in µd). Indeed, [ξ] is defined
over Fqm if and only if ξ ∈ F∗qm . Let ord(α) = m, then there exists λ ∈ F∗q such
that αm = λd that is ξm = ζλ ∈ Fq for some ζ ∈ µd. It follows that ξ ∈ F∗qm .

Finally we have the following useful proposition.

Proposition 2.7 ([HSV06]). Let E be an elliptic curve defined over Fq (of char-
acteristic greater than 3) which has a twist of degree d. Let r be a prime such that
r ‖ E(Fq) and r2 ‖ E(Fqk) with k minimal and d | k. Denote m = k/d. Then E
has a unique twist E′ of degree d such that r ‖ E′(Fqm).

2.6 Frobenius endomorphism and trace map

Definition 2.7 (Frobenius endomorphism). Let E be an elliptic curve defined over
Fq. The Frobenius endomorphism over E is defined as:

Φq : E
(
Fq
)
−→ E

(
Fq
)

(x, y) 7−→ (xq, yq)

The mapping Φk
q :7→ (xq

k
, yq

k
) is further called the qk-power Frobenius endomor-

phism.

D2.1 — Promising Algorithms for Pairing Computations 11

The fact that (xq, yq) belongs to E
(
Fq
)

can be shown as follows. Let pE(x, y)
be the polynomial in the equation of E. We have:

(x, y) ∈ E(Fq
)
⇐⇒ pE(x, y) = 0 ⇐⇒ pE(x, y)q = 0 .

Let cij ∈ Fq denote the coefficients of pE such that pE(x, y) =
∑

ij cijx
iyj . We

have:
pE(x, y)q =

∑
ij

cqijx
iqyjq =

∑
ij

cijx
iqyjq .

The first equality holds as all q factors vanish and the second equality holds as
cij ∈ Fq for every i and j. Namely, we have pE(x, y)q = pE(xq, yq) and therefore
P ∈ E(Fq

)
if and only if Φq(P) ∈ E(Fq

)
.

We further have the three following properties for any positive integer k:
(i) for every P ∈ E(Fqk), Φq(P) ∈ E(Fqk), hence Φq can be seen as a map
E(Fqk)→ E(Fqk) ;

(ii) for every P ∈ E
(
Fq
)

we have P ∈ E(Fqk) if and only if Φk
q (P) = P ;

(iii) Φk
q is an group endomorphism and in particular Φk

q (P1 +P2) = Φk
q (P1)+

Φk
q (P2) for every P1, P2 ∈ E

(
Fq
)

The first property follows from the same reasoning as above. The second property
results from the fact that x lies in Fqk if and only if xq

k
= x. The third property

holds since every map from an elliptic curve to itself is a group endomorphism (see
[Sil86]).

Definition 2.8 (trace map). The trace map over E(Fqk) is the mapping:

Tr : E(Fqk) −→ E(Fq)
P 7−→ P + Φq(P) + Φ2

q(P) + · · ·+ Φk
q (P)

Since the Φi
q’s are morphisms, so is the trace map. Moreover, for every P ∈

E(Fqk), the trace map satisfies:

Tr(Φq(P)) = Φq(Tr(P)) = Tr(P)

(which in particular shows that the range of the trace map is well E(Fq)).
Let r be a prime co-prime to q and q − 1. The morphism structures of Φq and

Tr imply that they can be seen as 2-dimensional linear applications over E[r] '
Zr×Zr. It is then interesting to determine their eigenvalues and the corresponding
eigenspaces.

The characteristic polynomial of the Frobenius is π(x) = x2 − tx + q where
t is called the trace of the Frobenius endomorphism (which has been introduced in
Section 2.1 as the trace of E). The Frobenius eigenvalues over E[r] are then the
roots of this polynomial modulo r, which are 1 and q since π(x) ≡ (x − 1)(x −
q) mod r (recalling that r | q + 1− t).

Proposition 2.8. The 1-eigenspace of the Frobenius over E[r] is the subgroup
of rational points E(Fq)[r]. The q-eigenspace of the Frobenius over E[r] is the
subgroup generated by R− Φq(R) for every R ∈ E[r]\E(Fq)[r].

12 ANR Project ECLIPSES — Restricted to ECLIPSES

Proof. The first statement straightforwardly holds as Φq(P) = P for every P ∈
E(Fq). For the second statement, let Q be a q-eigenvector of Φq and let P ∈
E(Fq)[r]. For every R ∈ E[r]\E(Fq)[r], there exist a, b ∈ Zr with b 6= 0 such
thatR = [a]P+[b]Q andR−Φq(R) = [a]P+[b]Q−([a]P+[bq]Q) = [b(q−1)]Q.
As r - q − 1, we have [b(q − 1)]Q 6= O and 〈Q〉 = 〈R− Φq(R)〉.

Proposition 2.9. The subgroup of rational points E(Fq)[r] is the k-eigenspace of
the trace map. The q-eigenspace of the Frobenius over E[r] is the 0-eigenspace of
the trace map.

Proof. The first statement straightforwardly holds as Tr(P) = [k]P for every P ∈
E(Fq). For the second statement, letQ be a q-eigenvector of Φq, we have Tr(Q) =
Q+ [q]Q+ [q2]Q+ · · ·+ [qk]Q = [(qk−1)/(q−1)]Q. As r | qk−1 and r - q−1
we have r | (qk − 1)/(q − 1) which implies Tr(Q) = O.

Let P ∈ E(Fq)[r]\{O}, let R ∈ E[r]\E(Fq)[r] and let Q = R − Φq(R).
The two above propositions show that (P,Q) is a basis of E[r] and that under this
basis, we have:

Φq ≡
(

1 0
0 q

)
and Tr ≡

(
k 0
0 0

)
Eventually note that 〈Q〉 is usually called the trace-zero subgroup of E[r].

2.7 Function field and divisors

Let E be an elliptic curve defined over Fq with defining polynomial pE (i.e.
pE(x, y) = x3 + ax + b − y2). Let K be either an extension Fqm of Fq (possibly
Fq) or the algebraic closure Fq of Fq. The function field K(E) is the field of
rational functions E(K) → K. Namely every f ∈ K(E) can be expressed as
f = f1/f2 where f1 and f2 are bivariate polynomials with coefficients in K (i.e.
f1, f2 ∈ K[x, y]). Furthermore, for every f = f1/f2 and g = g1/g2 in K(E)
we have the equivalence relation: f ∼ g (meaning f = g in K(E)) if and only if
f1g2 − g1f2 = hpE for some h ∈ K[x, y]. This equivalence relation is consistent
since for everyP ∈ E(K) we have pE(P) = 0, and consequently, if f ∼ g then for
every P ∈ E(K), we have f1(P)g2(P)− g1(P)f2(P) = 0 that is f(P) = g(P).

Definition 2.9. A uniformizer of E at P ∈ E(K) is a generator of the ideal {h ∈
K(E); h(P) = 0}. For every P ∈ E(K), E has a unique uniformizer at P up
to constants in Fq

∗. Let f be a non-zero function of K(E). Then the multiplicity
of f at P , denoted ordP (f), is the unique integer n such that f = gun where
g(P) ∈ K∗ and u is a uniformizer of E at P . We have f(P) ∈ K∗ if and only
if ordP (f) = 0. If ordP (f) > 0 (i.e. f(P) = 0) then f is said to have a zero at
P and if ordP (f) < 0 (i.e. f(P) is undefined/zero divides f(P)) then f is said to
have a pole at P .

Definition 2.10 (divisor). Let (nP)P∈E(Fq) be integers. A divisor D on E is a
formal sum:

D =
∑

P∈E
(
Fq

)nP (P)

D2.1 — Promising Algorithms for Pairing Computations 13

with finite support supp(D) = {P ; nP 6= 0}. The set of divisors on E is de-
noted Div(E). It has a natural group structure, with addition law

∑
P nP (P) +∑

P n
′
P (P) =

∑
P (nP + n′P)(P).

Remark. The set of divisors on E can be thought as the additive group obtained
from the points of E without any structure for the addition law. Every finite sum of
points is a divisor and we have

∑
P nP (P) =

∑
P n
′
P (P) if and only if nP = n′P

for every P . Such group could be actually defined from any setE without algebraic
structure. However, as we will see in the following, the algebraic structure of
elliptic curves makes divisors a very useful tool.

The degree of a divisor D =
∑

P nP (P) is defined as deg(D) =
∑

P nP . The
set of divisor with degree 0, which is denoted Div0(E), is a proper subgroup of
Div(E).

Definition 2.11. The divisor of the function f ∈ Fq(E)∗, denoted div(f) is defined
as:

div(f) =
∑

P∈E
(
Fq

) ordP (f)(P).

Two observations follow from this definition:
1. For every f, g ∈ Fq(E)∗, div(fg) = div(f) + div(g) and div(f/g) =

div(f)− div(g).
2. If div(f) = div(g) then div(f/g) = 0 that is f/g is constant. We deduce

that div(f) determines f up to constants in Fq
∗.

Definition 2.12. A principal divisor is a divisor which equals div(f) for some
function f ∈ Fq(E)∗.

Theorem 2.10 (Prop. II.3.1 [Sil86]). Let E be an elliptic curve defined over Fq.
For every f ∈ Fq(E)∗, deg(div(f)) = 0.

As a consequence of Theorem 2.10, the principal divisors form a subgroup of
Div0(E) ⊂ Div(E).

Definition 2.13. Two divisors D and D′ are said equivalent, denoted D ∼ D′, if
there exists f ∈ Fq(E)∗ such that D = D′ + div(f).

In other words, the difference between two equivalent divisors is a principal di-
visor. Moreover, the equivalence classes of divisors form a group called the divisor
class group (or Picard group) which is the quotient of Div(E) by the subgroup of
principal divisors.

Theorem 2.11. Let E be an elliptic curve defined over Fq. Let D =
∑

P nP (P)
be a degree 0 divisor on E. Then, there exists f ∈ Fq(E)∗ such that D = div(f)
(and equivalently D ∼ 0) if and only if

∑
P [nP]P = O.

Definition 2.14. Let f be a function and let D =
∑

P nP (P) of degree 0 such that
the supports of D and of div(f) are disjoint. We define:

f(D) =
∏
P

f(P)nP .

14 ANR Project ECLIPSES — Restricted to ECLIPSES

Note that if g = cf for some c ∈ Fq
∗ then for every divisor D of degree 0 we

have f(D) = g(D). That is, f(D) only depends on D and of div(f). Eventually,
the following theorem is useful for defining Weil and Tate pairings (a proof is given
in [Gal05, App.]).

Theorem 2.12 (Weil reciprocity law). Let E be an elliptic curve defined over Fq.
Let f and g be non-zero functions of Fq(E) such that (f) and (g) have disjoint
supports. Then:

f
(
div(g)

)
= g
(
div(f)

)
.

D2.1 — Promising Algorithms for Pairing Computations 15

3 Pairings

3.1 Basic definition

Let G1 and G2 be two additive Abelian groups with identity element denoted
O and let GT be a multiplicative Abelian group with identity element denoted 1.
In practice G1 and G2 will be some subgroups of points of an elliptic curve and
GT will be a subgroup of the multiplicative group of a finite field Fqk .

Definition 3.1. A pairing is a function:

e : G1 ×G2 −→ GT

satisfying the following properties:

(i) bilinearity: for every P, P1, P2 ∈ G1:

e(P,Q1 +Q2) = e(P,Q1) e(P,Q2) ,

and for every Q,Q1, Q2 ∈ G2:

e(P1 + P2, Q) = e(P1, Q) e(P2, Q) ,

(ii) non-degeneracy: if e(P,Q) = 1 for every Q ∈ G2, then P = O and if
e(P,Q) = 1 for every P ∈ G1, then Q = O,

(iii) efficiency: given any P ∈ G1 and Q ∈ G2, e(P,Q) can be efficiently com-
puted.

From the bilinearity property we can further deduce that, for every P ∈ G1

and Q ∈ G2, a pairing e satisfies e(P,O) = e(O, Q) = 1 and e([a]P, [b]Q) =
e(P,Q)ab = e([b]P, [a]Q).

The bilinearity and non-degeneracy properties also imply that the greatest com-
mon divisor of the three group orders #G1, #G2 and #GT is greater than one. For
cryptographic applications, one usually choose G1, G2 and GT to be cyclic groups
of prime order r. In that case, one can notice that there exists essentially only one
pairing: let e and e′ be two different pairings G1×G2 → GT and let e(P,Q) = e0

and e′(P,Q) = e′0 for some (P,Q) ∈ G1 × G2. Then let α = loge0 e
′
0, that

is e′0 = eα0 . By bilinearity, e′(·, ·) = e(·, ·)α. We deduce that every pairing
G1 × G2 → GT is a power of e, in other words every pairing is an element of
the multiplicative group of order r generated by e.

While using a pairing to design a cryptographic protocol, three different set-
tings appear depending on the existence or not of efficiently computable isomor-
phisms between G1 and G2 [GPS06]. Note that isomorphisms between G1 and
G2 always exist but they are not necessarily efficiently computable (e.g. P ′ 7→
[logP P

′]Q where P ∈ G∗1 and Q ∈ G∗2). We then consider three different types of
pairings:

– Type I: There exist efficiently computable isomorphisms φ : G1 → G2 and
ψ : G2 → G1. This type of pairing is called a symmetric pairing since it
is virtually equivalent to taking G1 = G2. Indeed if G1 = G2 then φ and

16 ANR Project ECLIPSES — Restricted to ECLIPSES

ψ exist (with φ = ψ = IdG1 as a particular case), and if φ and ψ exist
then one can define a symmetric pairing over G1×G1 as ê(·, ·) = e(·, ψ(·))
(the bilinearity and the non-degeneracy of e implies that of ê as ψ is an
isomorphism).

– Type II: There exists an efficiently computable isomorphism ψ : G2 → G1

but there exist no efficiently computable isomorphism φ : G1 → G2 (and in
particular G1 6= G2 otherwise φ = IdG1 would exist).

– Type III: There exist no efficiently computable isomorphisms between G1

and G2 (and in particular G1 6= G2).
In contrast to symmetric pairings (type I), pairings of types II and III are called

asymmetric pairings. Note that a symmetric pairing e(·, ψ(·)) can always be con-
structed from an asymmetric pairing of type II.

In the following we will describe two pairings which can be used to construct
type I, II or III cryptographic pairings: the Weil pairing and the Tate pairing.

3.2 The Weil Pairing

Let E be an elliptic curve defined over Fq and let r|#E(Fq) co-prime to q.
Let k be the embedding degree of E(Fq) with respect to r and assume k > 1 (i.e.
r - q − 1). According to Proposition 2.4, we have E[r] = E(Fqk)[r]. The Weil
pairing is defined as:

wr : E[r]× E[r] −→ µr ⊂ F∗
qk

(P,Q) 7−→ fP (DQ)/fQ(DP)

whereDP andDQ are divisors onE withDP ∼ (P)−(O), DQ ∼ (Q)−(O) and
supp(DP) ∩ supp(DQ) = ∅, and where fP and fQ are functions of Fqk(E) with
div(fP) = rDP and div(fQ) = rDQ (such functions exist according to Theorem
2.11).

Consistency. Let us first show that fP (DQ)/fQ(DP) ∈ µr. For every P,Q ∈
E[r], we have: (

fP (DQ)

fQ(DP)

)r
=
fP (rDQ)

fQ(rDP)
=
fP (div(fQ))

fQ(div(fP))
= 1,

where the last equality holds by the Weil reciprocity (see Theorem 2.12). We now
show that the Weil pairing is consistent for every choice of DP , DQ, fP and fQ
satisfying the aforementioned properties. On the one hand, if fP and f ′P are such
that div(fP) = div(f ′P) then there exists c ∈ F∗

qk
such that f ′P = cfP and:

f ′P (DQ) = (cfP)(DQ) = fP (DQ)

(the same argument holds for fQ). On the other hand, choosing D′P instead of DP

implies computing f ′P (DQ)/fQ(D′P) where div(f ′P) = rD′P . If D′P ∼ DP , then
there exists a function g ∈ Fqk(E)∗ such that D′P = DP + div(g) and f ′P = fP g

r,
which implies:

f ′P (DQ)

fQ(D′P)
=

fP (DQ)gr(DQ)

fQ(DP)fQ(div(g))
=

fP (DQ)gr(DQ)

fQ(DP)g(div(fQ))
=
fP (DQ)

fQ(DP)
.

D2.1 — Promising Algorithms for Pairing Computations 17

Note that the equality fQ
(
div(g)

)
= g

(
div(fQ)

)
is due to the Weil reciprocity

(see Theorem 2.12). The same reasoning holds for the choice of DQ which shows
the consistency of the Weil pairing.

Theorem 3.1 (Weil pairing properties). The Weil pairing satisfies the bilinearity
and the non-degeneracy properties. The Weil pairing further satisfies the following
alternating property: for every P,Q ∈ E[r] we have wr(P,Q) = e(Q,P)−1, and
in particular wr(P, P) = 1.

Proof. The alternating property straightforwardly results by definition of the Weil
pairing. For the proof of non-degeneracy see [Gal05]. The proof of bilinearity is
quite similar to the one for the Tate pairing (see proof of Theorem 3.2 hereafter).
In particular it is shown that fP1+P2(DQ) = fP1(DQ)fP2(DQ)αr and fQ(DP1 +
DP2) = fQ(DP1)fQ(DP2)βr for some α, β ∈ F∗

qk
. Therefore we have wr(P1 +

P2, Q) = wr(P1, Q)wr(P2, Q)(αβ−1)r and since wr values lies in µr, we deduce
(αβ−1)r ∈ µr that is (αβ−1)r = 1.

A consequence of the alternating property of the Weil pairing (and in particular
of the fact that wr(P, P) = 1 for every P ∈ E[r]) together with the bilinearity
property is that for every Q ∈ 〈P 〉 we have wr(P,Q) = 1.

3.3 The Tate Pairing

Let π denote the canonical projection F∗
qk
→ F∗

qk
/(F∗

qk
)r. Namely, for every

α, β ∈ F∗
qk

, we have π(α) = π(β) if and only if α = βλr for some λ ∈ F∗
qk

.
Let E be an elliptic curve defined over Fq and let r|#E(Fq) co-prime to q.

Let k be the embedding degree of E(Fq) with respect to r and assume k > 1 (i.e.
r - q − 1). According to Proposition 2.4, we have E[r] = E(Fqk)[r]. The Tate
pairing is defined as:

〈·, ·〉r : E[r]× E(Fqk) −→ F∗
qk
/(F∗

qk
)r

(P,Q) 7−→ 〈P,Q〉r = π(fP (DQ))

where fP is any function of Fqk(E) with div(fP) = r(P)− r(O) and DQ is any
divisor on E equivalent to (Q)− (O) with support disjoint from {O, P}.

Consistency. We show hereafter that the Tate pairing is consistent for every choice
of fP and DQ satisfying the aforementioned properties. As for the Weil pairing,
changing fP without modifying its divisor amounts to multiplying it by a constant
in F∗

qk
, which does not affect the value of fP (DQ). On the other hand, if DQ

and D′Q are such that DQ ∼ D′Q (but possibly DQ 6= D′Q), then we may have
fP (DQ) 6= fP (D′Q) but π(fP (DQ)) = π(f ′P (D′Q)) always holds (which explains
why the values of the Tate pairing are equivalence classes). Indeed, if D′Q ∼ DQ

then there exists g ∈ Fqk(E) such that D′Q = DQ + div(g) and:

fP (D′Q) = fP (DQ)fP
(
div(g)

)
= fP (DQ)g

(
div(fP)

)
= fP (DQ)

(
g(P)

g(O)

)r
,

18 ANR Project ECLIPSES — Restricted to ECLIPSES

that is π
(
fP (D′Q)

)
= π

(
fP (DQ)

)
. Note that the second equality is due to the Weil

reciprocity (see Theorem 2.12).

The reduced Tate Pairing. In practice, it is more convenient to work with actual
values in F∗

qk
rather than with equivalence classes. The exponentiation to the (qk−

1)/r maps every class of equivalence in F∗
qk
/(F∗

qk
)r to a single element in µr ⊂

(Fqk)∗. The reduced Tate pairing is then defined as:

tr : E[r]× E(Fqk) −→ µr ⊂ F∗
qk

(P,Q) 7−→ 〈P,Q〉(q
k−1)/r

r

Using the previous notations we have tr(P,Q) = fP (DQ)(qk−1)/r.
This definition of the Tate pairing is equivalent of the one given above in the

sense that the exponentiation to the (qk−1)/r is an isomorphism from F∗
qk
/(F∗

qk
)r

to µr ⊂ F∗
qk

.

Theorem 3.2 (Tate pairing properties). The Tate pairing satisfies the bilinearity
and the non-degeneracy properties.

Proof. For a proof of the non-degeneracy see [Gal05], we prove hereafter the bi-
linearity. For every Q1, Q2 ∈ E(K), we have fP (DQ1+Q2) = fP (DQ1 +DQ2) =
fP (DQ1)fP (DQ2) for every P ∈ E[r]. On the other hand, for every P1, P2 ∈
E[r] we have div(fP1+P2) = div(grfP1fP2) where g ∈ Fqk(E) is such that
div(g) = (P1 + P2) − (P1) − (P2) + (O), which implies π(fP1+P2(DQ)) =
π(fP1(DQ)fP2(DQ)) for every Q ∈ E(Fqk).

Let P ∈ E[r] and Q,Q′ ∈ E(Fqk) such that Q′ = Q + [r]R for some R ∈
E(Fqk). We have:

tr(P,Q
′) = tr(P,Q)tr(P,R)r = tr(P,Q) .

In other words, two points Q and Q′ which lie in the same equivalence class of
E(Fqk)/[r]E(Fqk) are such that tr(P,Q′) = tr(P,Q) for every P . For this rea-
son the Tate pairing is sometimes defined as a map E[r] × E(Fqk)/[r]E(Fqk) →
µr ⊂ F∗

qk
. However, in practice it is more convenient to work with a set of points

representingE(Fqk)/[r]E(Fqk) i.e. for which every element lies in a distinct class.

Lemma 3.3. If r3 - #E(Fqk) then E[r] ∩ [r]E(Fqk) = {O}.

The above lemma states that when r3 - #E(Fqk) (which usually occurs in
practice), no r-torsion point of E lies in [r]E(Fqk) except the identity O. In other
words, every points in E[r] corresponds to a distinct class of E(Fqk)/[r]E(Fqk).
In that case, the Tate pairing can be defined as a map:

tr : E[r]× E[r] −→ µr ⊂ F∗qk .

In the following we will assume r3 - #E(Fqk) and we will consider E[r] × E[r]
to be the domain of the Tate pairing.

Finally we have the next degeneracy result for the restriction of the Tate pairing
over E(Fq).

D2.1 — Promising Algorithms for Pairing Computations 19

Proposition 3.4 (Lem. IX.8 [Gal05]). Let E be an elliptic curve defined over Fq,
let r|#E(Fq) such that gcd(r, q) = 1, and let k > 1 be the embedding degree of
E(Fq) with respect to r. Then for every P ∈ E(Fq)[r] and Q ∈ E(Fq), 〈P,Q〉r =
(F∗
qk

)r and tr(P,Q) = 1.

3.4 Pairings over cyclic subgroups

We discuss here the selection of the groups G1 and G2 for the definition of
the pairing e : G1 × G2 → GT . Let us first note that, except in some specific
applications requiring composite order groups, r is always chosen to be a prime
for security reasons. Indeed, the security of all pairing-based protocols requires
that the discrete logarithm problem is hard over E[r] and µr ⊂ F∗

qk
. The best

choice to satisfy this requirement is to take r as a (large) prime. In that case E[r]
is isomorphic to Zr ×Zr that is it contains r cyclic subgroups of order r and every
P ∈ E[r]\{O} belongs to one and only one of these subgroups. The groups G1

and G2 are then chosen as proper subgroups of E[r] and there exist P,Q ∈ E[r]
such that G1 = 〈P 〉 and G2 = 〈Q〉 .

The most natural choice for G1 is to take the subgroup of rational points
E(Fq)[r]. Indeed, storing a point of E(Fqk) requires k times more memory than
storing a point ofE(Fq) and computing a point addition overE(Fqk) is expected to
take k2 times the time of the same operation over E(Fq). For these reasons, work-
ing with rational points is always preferred to working with Fqk -rational points,
and in practice one uses G1 = E(Fq)[r].

On the other hand, we have seen that for both Weil and Tate pairings we have
e(P, P) = 1 for every P ∈ E(Fq)[r] (for the Weil pairing, this is further true for
any P ∈ E[r]), hence choosing G2 = G1 = E(Fq)[r] will yield a degenerate
pairing. Therefore, to get a non-degenerate pairing, one has to choose G2 as a
distinct subgroup of E[r] i.e. as one of the r − 1 non-rational subgroups. The
choice of this subgroup then depends on the type of pairing (I, II or III–see Section
3.1) which is desired.

Type I. In order to construct a symmetric pairing while G1 = E(Fq)[r], one needs
an efficiently computable isomorphism from the rational subgroup ofE[r] to a non-
rational subgroup of E[r]. The only known way to construct such an isomorphism
is by using a distortion map (i.e. an endomorphism of the curve mapping rational
points to non-rational points in E(Fqk)). As explained in Section 2.4, distortion
maps only exist over supersingular elliptic curves. Therefore, defining a symmet-
ric pairing (with G1 = E(Fq)[r]) requires the use of a supersingular elliptic curve,
which restricts the choice of the curve to those defined in Table 2 (see Section 2.4).
Then G2 is defined as G2 = 〈φ(P)〉 for any P ∈ G1 and the trace map is an (ef-
ficiently computable) isomorphism G2 → G1, which completes the requirements
for the symmetric pairing.

Remark. Another possibility is to take both G1 and G2 among the non-rational
subgroups. For instance, one can select a non-rational point P ∈ E(Fqk)[r] and
set G1 = 〈P 〉 and G2 = 〈φ(P)〉 where φ is the qd-power Frobenius for some

20 ANR Project ECLIPSES — Restricted to ECLIPSES

d < k. However such an approach is unlikely to be followed in practice as it would
yield a quite inefficient pairing.

Type II. An asymmetric pairing of type II can be constructed using any ordi-
nary elliptic curve by taking G2 as a non-rational subgroup of E[r] (still with
G1 = E(Fq)[r]). In opposition to the previous case, this ensures that there ex-
ist a priori no efficiently computable isomorphism from G1 to G2. An additional
requirement is that G2 is not the trace-zero subgroup so that the trace is an (effi-
ciently computable) isomorphism from G2 to G1 (see Section 2.6). To summarize,
G2 is chosen as one of the r − 2 subgroups of order r which is neither the rational
subgroup nor the trace-zero subgroup.

Type III. Finally, an asymmetric pairing of type III is constructed using any ordi-
nary elliptic curve by taking G1 as the rational subgroup and G2 as the trace-zero
subgroup. As we will explain in Section 5, such type III pairings are the most
efficient to compute.

3.5 Pairing-friendly elliptic curves

All elliptic curves are not suitable for the computation of Weil and Tate pair-
ings. In fact, most ordinary elliptic curves have embedding degrees k which are
about the same size as q which renders the arithmetic over Fqk clearly impracti-
cal. A pairing-friendly elliptic curve is an elliptic curve E defined over Fq such
that #E(Fq) admits a large prime factor r and the embedding degree k of E with
respect to r is small (typically smaller that 30). As we will see in Section 4.1, the
value of the embedding degree must be actually chosen accordingly to the desired
security level for the underlying cryptographic protocol.

Many families of pairing-friendly elliptic curves have been proposed in the
literature and giving an exhaustive list is out of the scope of this document. We
refer the reader to [FST10] which gives a complete and up-to-date taxonomy of
pairing-friendly elliptic curves.

D2.1 — Promising Algorithms for Pairing Computations 21

4 Promising pairing-based protocols

In this section, we present three cryptographic protocols which make use of
pairings to achieve specific properties. The security of these protocols are based
on certain hardness assumptions which are recalled hereafter.

4.1 Hardness assumptions

The security of cryptographic protocols is based on some hardness assumptions
which state that some mathematical problems are hard to solve (meaning that they
cannot be solved in a reasonable time with a reasonable computational resource).
Under such assumptions, cryptographic protocols can be formally proved to be
secure: one shows that if the system can be efficiently broken then the underlying
problem can be efficiently solved, which by assumption is impossible. We present
hereafter some of these problems which are used to prove the security of elliptic
curve and pairing-based protocols.

Let G denote an Abelian group of order r. The three following problems are
widely used in cryptography.

• Discrete Logarithm (DL): Given P ∈ G and [a]P , compute a.

• Computational Diffie-Hellman (CDH): Given P ∈ G, [a]P , and [b]P ,
compute [ab]P .

• Decisional Diffie-Hellman (DDH): Given P ∈ G, [a]P , [b]P , and [c]P ,
decide whether ab ≡ c mod r.

The DL problem is believed to be hard for carefully chosen groups of large
order (we will see later what large means) including the multiplicative group of a
finite field and the group of points of an elliptic curve defined over a finite field.

It is simple to see that if one can solve the DL problem efficiently then one
can also solve CDH and DDH efficiently. Also, the ability of solving CDH implies
that of solving DDH. It is further known that CDH is almost as hard as DL over
many groups [BL96, dB88, MW99]. This can be summarized with the following
inequality between the problem difficulties:

DL ' CDH ≥ DDH .

On the other hand, there exist groups for which DDH is easy while CDH is
(presumably) hard i.e. for which:

DL ' CDH > DDH = easy.

These groups, called gap Diffie-Hellman groups, are typically groups G for which a
symmetric pairing ê : G×G→ GT exists. On these groups, we have ê([a]P, [b]P) =
ê(P, [c]P) if and only if ab ≡ c mod r (by bilinearity of the pairing), which pro-
vides a simple way to solve DDH although CDH is still (presumably) hard.

The definition of gap Diffie-Hellman groups can be extended to pair of groups
(G1,G2) for which there exists an asymmetric pairing e : G1 × G2 → GT . Let
r be the order of G1, G2 and GT . The following problems generalize CDH and
DDH:

22 ANR Project ECLIPSES — Restricted to ECLIPSES

• Computational Co-Diffie-Hellman (Co-CDH): Given Q ∈ G2, [a]Q and
P ∈ G1, compute [a]P .

• Decisional Co-Diffie-Hellman (Co-DDH): Given P ∈ G1, [a]P , Q ∈ G2

and [b]Q, decide whether a ≡ b mod r.

When G1 = G2 these problems are equivalent to the standard CDH and DDH.
When G1 6= G2, the existence of an asymmetric pairing e : G1×G2 → GT implies
that co-DDH is easy (by testing whether e(P, [b]Q) = e([a]P,Q)) while co-CDH
is still (presumably) hard. The pair (G1,G2) is then called a gap co-Diffie-Hellman
pair.

To summarize, the existence of a pairing e : G1 × G2 → GT always enables
to solve co-DDH over (G1,G2) while solving DDH over G requires the existence
of a symmetric pairing ê : G × G → GT . When CDH and co-CDH are hard, the
existence of a pairing e : G1 ×G2 → GT implies:

(i) (G1,G2) is a co-gap Diffie-Hellman pair;
(ii) G1 is a gap Diffie-Hellman group only in the type I setting;
(iii) G2 is a gap Diffie-Hellman group only in the type I and type II settings.

Note that in groups which are not gap Diffie-Hellman, the only known way to
solve DDH is to compute [ab]P and then check whether [ab]P = [c]P . DDH is
then considered to be as hard as CDH (and hence almost as hard as DL).

In order to prove the security of pairing-based protocols, a further generaliza-
tion of CDH has been introduced. Let ê : G × G → GT be a symmetric pairing
and let consider the following problem.

• Bilinear Diffie-Hellman (BDH): Given P ∈ G, [a]P , [b]P and [c]P , com-
pute ê(P, P)abc.

It is simple to see that the ability of solving CDH in either G or GT implies the
ability of solving BDH. Nothing else is known about the hardness of BDH but it is
usually assumed to be as hard as the easier among CDH in G and CDH in GT .

Another important hardness relation due to pairing is the following. The DL
problem over groups G1 and G2 such that there exists a pairing e : G1×G2 → GT

is not harder than the DL problem over GT . Indeed, as e([a]P,Q) = e(P,Q)a,
the solution of the DL instance (P, [a]P) over G1 is also the solution of the DL
instance (e(P,Q), e(P,Q)a) over GT (the same reasoning applies for G2). This
relation has been originally used as an “attack” against elliptic curve cryptosystems
[MOV91, MOV93, FR94]. Let E be an elliptic curve over Fq and suppose that
the DL problem over E(Fq)[r] is used to design some cryptographic protocol for
some large r | #E(Fq). Let k be the embedding degree of E with respect to
r. The Weil and Tate pairings enable to transport the DL problem over E(Fq)[r]
to the DL problem over µr ⊂ F∗

qk
. If the embedding degree k is low (as for

instance for supersingular elliptic curves–see Section 2.4), then it might be easier
to solve the DL problem in F∗

qk
than to solve it in E(Fq). Indeed, we only know

exponential-time algorithms to solve DL over elliptic curves whereas we know
subexponential-time algorithms to solve DL over multiplicative groups of finite
fields. Consequently, while using the Weil and the Tate pairing to implement some

D2.1 — Promising Algorithms for Pairing Computations 23

Table 3: Minimal bit-size of r and qk for the DL problem over E(Fq)[r] and F∗
qk

to be hard w.r.t. a given security level.

security bits |r| for DL in E(Fq) |qk| for DL in F∗
qk

80 160 1248
128 256 3248
256 512 15424

cryptographic protocol, one must take the group F∗
qk

substantially larger than r in
order to ensure the same difficulty level for the DL in both groups.

Table 3 gives the minimal bit-size of r | #E(Fq) as well as the minimal bit-
size of qk to get a certain security level for the DL problem over E(Fq)[r] and F∗

qk

respectively (where r must be a prime). This level is given in terms of security bits:
m security bits mean that the problem requires at least 2m elementary operations
to be solved. For a chosen security level, one must ensure that the sizes of r and qk

verify the lower bounds specified in Table 3.

4.2 Boneh-Franklin identity-based encryption scheme

Identity-based encryption (IBE) is a form of public-key encryption with the
specification that a user’s public key is simply his identity (or more generally any
string that can be derived from public data identifying the user such as his name,
his e-mail address, etc.). The main motivation of IBE is to solve the public key dis-
tribution issue of classical public-key cryptography. Indeed, with an IBE scheme
Bob does not need to get Alice public key certificate to send her a ciphered mes-
sage since he already knows Alice identity. On the other hand, Alice must obtain
the private key corresponding to her identity from an authority called Private Key
Generator (PKG).

Although the concept of IBE was introduced by Shamir in 1984 [Sha84], no
actual solution was known at that time and the design of an IBE scheme remained
an open problem until 2001 when Boneh and Franklin proposed the first efficient
IBE scheme based on the use of pairings [BF01, BF03]. In Boneh-Franklin IBE
scheme, the PKG selects (i) two groups G = 〈P 〉 and GT of order r for which a
symmetric pairing ê : G × G → GT exists, (ii) two cryptographic hash functions
H1 : {0, 1}∗ → G∗ and H2 : GT → {0, 1}n, (iii) a random s ∈ Zr. The PKG set
Ppub = [s]P as its own public key and it publishes the scheme parameters:

(G,GT , ê, H1, H2, P, Ppub) .

The message space isM = {0, 1}n and the PKG secret key, also called the master
key, is s. The private key KID corresponding to a given identity ID ∈ {0, 1}∗ is
defined as:

KID = [s]QID ,

where QID = H1(ID) ∈ G∗. Note that only the PKG is able to derive KID as

24 ANR Project ECLIPSES — Restricted to ECLIPSES

only the PKG knows the master key s (for everyone else, recovering s requires the
ability of solving the DL problem).

The encryption of a message m ∈M under a public key ID works as follows:
1. compute QID = H1(ID),
2. choose a random k ∈ Zr,
3. set the ciphertext to be:

c =
(
[k]P,m⊕H2(gkID)

)
where gID = ê(QID, Ppub) ∈ G∗T .

Then, the decryption of the ciphertext c from the private key KID works as
follows:

1. compute gkID = ê(KID, [k]P). The latter equality indeed holds as:

gkID = ê(QID, Ppub)
k = ê(QID, P)ks = ê([s]QID, [k]P) = ê(KID, [k]P) ,

2. recover m by m =
(
m⊕H2(gkID)

)
⊕H2(gkID).

The computational requirements of the Boneh-Franklin scheme are 2:
– for encryption: one scalar multiplication, one hashing to G and one pairing

evaluation,
– for decryption: one pairing evaluation with exponentiation of the result.
One can check that the security of the Boneh-Franklin scheme is related to the

BDH problem. Denoting QID = [a]P (and recalling Ppub = [s]P), the decryption
of a message requires the computation of gkID = ê(P, P)ask from P , [a]P , [s]P
and [k]P , which is precisely a BDH instance. In [BF01], it is formally proved that
the above scheme is secure under the assumption that BDH is a hard problem and
that the hash functions H1 and H2 behave as random oracles. A further scheme is
also described which is very close to the basic scheme presented above but which
is proved to be secure under a chosen ciphertext attack scenario.

4.3 Boneh-Lynn-Shacham short signature scheme

For standard digital signature schemes, the size of the signature is at least four
times the security level (typically for DSA and ECDSA) and it may be substantially
larger (e.g. for RSA-based signature schemes such as RSA-PSS). For instance, to
get a 80-bit security level, (EC)DSA signatures require to be 320 bits long while
RSA-PSS signatures require to be 1248 bits long. For some applications, for in-
stance where a signature shall be keyed in by a human, it would be more convenient
to have shorter signatures. This was the motivation of the short signature scheme
introduced by Boneh, Lynn and Shacham in 2001 which provides signatures whose
size is only twice the security level [BLS01, BLS04]. They achieve this property
by the use of a pairing.

The Boneh-Lynn-Shacham (BLS) signature scheme makes use of a co-gap
Diffie-Hellman pair of groups (G1,G2) of order r and for which an efficiently
computable isomorphism from G2 to G1 exists (this isomorphism is not used in
the design but it is necessary to prove the security of the scheme). Such a pair
(G1,G2) is typically a pair of groups for which there exists a type II asymmetric

2. We omit the hashing to {0, 1}n and the XOR which are basic and very efficient operations.

D2.1 — Promising Algorithms for Pairing Computations 25

pairing e : G1 ×G2 → GT (the pairing yields the co-gap Diffie-Hellman property
and the type II yields the isomorphism G2 → G1). The BLS signature scheme
further makes use of a cryptographic hash function H : {0, 1}∗ → G1.

Let Q be a public generator of G2. The generation of a public-private key pair
consists in choosing a random k ∈ Zr and setting Qpub = [k]Q as public key and
k as private key.

The signature s of a message m ∈ {0, 1}∗ under the private key k is sim-
ply given by S = [k]Pm where Pm = H(m). The verification of the signature
consists in computing Pm = H(m) and checking that (Pm, S,Q,Qpub) is a valid
co-DDH instance. If the signature is correct, we indeed have (Pm, S,Q,Qpub) =
(Pm, [k]Pm, Q, [k]Q) which is a valid co-DDH instance. In practice this verifica-
tion is done by checking whether e(Pm, Qpub) equals e(Q,S), and if the signature
is valid we indeed have:

e(Pm, Qpub) = e(Pm, Q)k = e(S,Q) .

The computational requirements of the BLS scheme are:
– for signing: one hashing to G1 and one scalar multiplication of the hash

value,
– for verifying: one hashing to G1 and two pairing evaluations.
To forge a valid signature for a message m while ignoring the private key k,

one must compute S = [k]Pm from Pm, Q and Qpub = [k]Q, which is precisely a
co-CDH instance. In [BLS01], it is formally proved that the BLS scheme is secure
against signature forgery under the assumption that co-CDH over (G1,G2) is a
hard problem and that the hash function H behaves as a random oracle.

The shortness of the signature comes at the cost of a little modification of the
scheme. The signature is no more defined as S = [k]Pm = (xS , yS) but as xS
only: the y-coordinate of S is removed. Note that the x-coordinate of a point S
is also the x-coordinate of its inverse −S = (xS ,−yS). The verification starts by
recovering y′S ∈ {yS ,−yS} from xS . Then the signature is accepted as valid if and
only if:

e(Pm, Qpub) = e(S′, Q) or e(Pm, Qpub) = e(S′, Q)−1,

where S′ = (xS , y
′
S) ∈ {S,−S}. Note that the soundness of the verification holds

from e(S′, Q)−1 = e(−S,Q). Therefore, compared to the previous scheme, [k]Pm
and −[k]Pm are both valid signatures for a message m. As argued in [BLS01],
this modification does not affect the security of the scheme. The verification still
requires two pairing computations and it further requires an inversion in GT .

As explained in Section 3.4, a type II pairing is obtained by taking G1 =
E(Fq)[r] and G2 as the trace-zero subgroup of E(Fqk)[r] (where r | #E(Fq)
and k is the embedding degree of E w.r.t. r). Note that the x-coordinate of a point
in G1 then lies in Fq and therefore has the same size as q. Since to get an m-bit
security level one must take |q| ≥ |r| ≈ 2m for the hardness of the DL problem
and |Im(H)| = |q| ≈ 2m for the collision-resistance of the hash function, the size
of the obtained signature is about twice the security level, that is one half of the
size of a (EC)DSA signature with equivalent security.

26 ANR Project ECLIPSES — Restricted to ECLIPSES

4.4 Joux one-round tripartite key agreement

The Diffie-Hellman key agreement protocol enables two parties, say Alice and
Bob, to establish a shared secret key over an insecure channel that may be spied on
by some eavesdropper. Let G = 〈P 〉 be an additive group of order r on which the
CDH problem is presumably hard. Alice randomly selects a ∈ Zr and sends [a]P
to Bob, while Bob randomly selects b ∈ Zr and sends [b]P to Alice. The common
secret is then defined as K = [ab]P which can be easily computed by both Alice
and Bob. An eavesdropper is then faced with computing K = [ab]P from P ,
[a]P and [b]P which is precisely a CDH instance and which is hence (presumably)
impossible.

Figure 3: Two-round tripartite Diffie-Hellman protocol [Men05].

The Diffie-Hellman protocol can be extended to a tripartite protocol including
a third party, say Chris. Such a two-round protocol is illustrated in Fig. 3 where
Alice, Bob and Chris agreed on a shared secret K = [abc]P .

Figure 4: One-round tripartite Diffie-Hellman protocol [Men05].

In [Jou00, Jou04], Joux showed that the use of a pairing makes it possible to
construct a one-round tripartite Diffie-Hellman protocol. This work had an impor-
tant impact for cryptography as it was the first to show that pairings can be useful
for the design of cryptographic protocols. The principle of Joux protocol is illus-
trated in Fig. 4: each party selects a random in Zr and sends the corresponding

D2.1 — Promising Algorithms for Pairing Computations 27

multiple of P to the other parties. Then the three parties can derive a common
secret key K = ê(P, P)abc as:

K = ê([a]P, [b]P)c = ê([a]P, [c]P)b = ê([b]P, [c]P)a .

An eavesdropper who wishes to recover K must then be able to compute
ê(P, P)abc from P , [a]P , [b]P and [c]P , which is precisely a BDH instance. The
protocol security then holds from the hardness of BDH.

28 ANR Project ECLIPSES — Restricted to ECLIPSES

5 Pairing computation algorithms

This section describes efficient algorithms for the computation of pairings. We
start by recalling Miller’s algorithm on which are based all the existing algorithms
to compute the Weil and the Tate pairings. We then address extension field arith-
metic which is essential to pairing computation. Afterwards, we describe various
optimizations of the Tate pairing and finally we describe two variants leading to
faster computation in some cases.

5.1 Miller’s algorithm

Let E be an elliptic curve defined over Fq and let r a positive integer such that
r | #E(Fq) and gcd(r, q) = 1. Let k denote the embedding degree of E with
respect to r. In the following, we will denote by fn,P any function such that:

div(fn,P) = n(P)− ([n]P)− (n− 1)(O) .

Let P,Q ∈ E(Fqk)[r] and DP , DQ ∈ Div(E) such that DP = (P +R)− (R)
and DQ = (P + R′) − (R′) where R,R′ ∈ E(Fqk)\{P,Q,O}. Note that DP ∼
(P) − (O) and DQ ∼ (Q) − (O). Also note that div(fr,P) = r(P) − r(O) and
div(fr,Q) = r(Q)−r(O). From the definition of the Weil pairing given in Section
3.2 we have:

wr(P,Q) =
fr,P (DQ)

fr,Q(DP)
=
fr,P (Q+R′)fr,Q(R)

fr,P (R′)fr,Q(P +R)
,

and from the definition of the Tate pairing given in Section 3.3 we have:

tr(P,Q) = fr,P (DQ)(qk−1)/r =

(
fr,P (Q+R′)

fr,P (R′)

)(qk−1)/r

.

From these equations, it appears that computing the Weil and the Tate pairing
requires an algorithm to evaluate a function fr,P in a point Q. Such an algorithm
was proposed by Miller which is the basis of all pairing computation methods used
in cryptography [Mil86, Mil04].

Let `P1,P2 be a function such that `P1,P2(x, y) = 0 is the equation of the line
through P1 and P2 (or the tangent at P1 = P2). According to Section 2.2, this
function has a zero at three points of the curve: P1, P2 and −(P1 + P2). We then
have:

div(`P1,P2) = (P1) + (P2) + (−(P1 + P2))− 3(O) .

Similarly, let vP by any function such that vP (x, y) = 0 is the equation of the
vertical line through P . According to Section 2.2, this function has a zero at two
points of the curve: P and −P . We then have:

div(vP) = (P) + (−P)− 2(O) .

D2.1 — Promising Algorithms for Pairing Computations 29

Miller’s algorithm starts from the following observation: for every n,m ∈ N
and for every P ∈ E

(
Fq
)
, we have:

div(fn+m,P) = (n+m)(P)− ([n+m]P)− (n+m− 1)(O)

= (n)(P)− ([n]P)− (n− 1)(O)︸ ︷︷ ︸
div(fn,P)

+ (m)(P)− ([m]P)− (m− 1)(O)︸ ︷︷ ︸
div(fm,P)

+ ([n]P) + ([m]P)− ([n+m]P)− (O)︸ ︷︷ ︸
div(`[n]P,[m]P)−div(v[n+m]P)

which implies:

fn+m,P = fn,P fm,P
(
`[n]P,[m]P /v[n+m]P

)
. (15)

Also note that div(f0,P) = div(f1,P) = 0 which implies that f0,P and f1,P are
constant and can be taken as f0,P = f1,P = 1. Equation (15) directly yields the
following iterative relations:

f0,P = f1,P = 1
fi+1,P = fi,P · `[i]P,P /v[i+1]P

f2i,P = f2
i,P · `[i]P,[i]P /v[2i]P

From these relations Miller derived an iterative algorithm to compute fn,P (Q)
for any n ∈ N, where every step consists in computing either ([2i]P, f2i,P (Q)) or
([2i+ 1]P, f2i+1,P (Q)) from ([i]P, fi,P (Q)) depending on the current bit ni of n.

Algorithm 1 Miller’s Algorithm
Input: P ∈ E(Fqk), Q ∈ E(Fqk), n = (nl−1, . . . , n1, n0)2

Output: fn,P (Q) where div(fn,P) = n(P)− ([n]P)− (n− 1)(O)
1. T ← P , f ← 1
2. for i = l − 1 downto 0 do
3. f ← f2 · `T,T (Q)/v[2]T (Q)
4. T ← [2]T
5. if ni = 1 then
6. f ← f · `T,P (Q)/vT+P (Q)
7. T ← T + P
8. end if
9. end for

10. return f

Note that this algorithm is very close to a simple elliptic curve scalar multipli-
cation computing [n]P , but with additional computation at Steps 3 and 6 (in fact
Algorithm 1 computes both [n]P and fn,P (Q) but only returns fn,P (Q)). More-
over, as we show hereafter, part of the additional computation is already done for
the computation of [n]P .

30 ANR Project ECLIPSES — Restricted to ECLIPSES

Detail of Steps 3 and 4. At step 3, one must compute the coefficients of `T,T and
v[2]T in order to evaluate `T,T (Q) and v[2]T (Q). On the one hand, `T,T (x, y) = 0
is the equation of the tangent of the curve at T . According to Section 2.2 and
denoting T = (xT , yT), we have:

`T,T (x, y) = λx− y + β , where λ =
3x2

T + a

2yT
and β = yT − λxT .

Still according to Section 2.2, the point [2]T = (x′, y′) satisfies:

x′ = λ2 − 2xT and y′ = λx′ − β .

On the other hand v[2]T (x, y) = 0 is the equation of the vertical line through T
and vT can be taken as vT (x, y) = x − x′. The computation at Steps 3 and 4 in
Algorithm 1 can then be performed as:

λ← (3x2
T + a)/(2yT)

β ← yT − λxT
x′ ← λ2 − 2xT
y′ ← λx′ − β
f ← f2(λxQ − yQ + β)/(xQ − x′)
T ← (x′, y′)

Detail of Steps 6 and 7. At Step 6, the function `T,P is such that `T,T (x, y) = 0 is
the equation of the line through T and P . According to Section 2.2, we have:

`T,P (x, y) = λx− y + β , where λ =
yT − yP
xT − xP

and β = yT − λxT .

Denoting, T + P = (x′, y′), we further have:

x′ = λ2 − xT − xP and y′ = λx′ − β .

Finally and similarly than above, we have: vP+T (x, y) = x− x′ and the computa-
tion at Steps 6 and 7 can be performed as:

λ← (yT − yP)/(xT − xP)
β ← yT − λxT
x′ ← λ2 − xT − xP
y′ ← λx′ − β
f ← f2(λxQ − yQ + β)/(xQ − x′)
T ← (x′, y′)

Last iteration. In practice, Miller’s algorithm is used to compute fr,P (Q) where
P,Q ∈ E(Fqk)[r]. This implies that [r]P = O and the last iteration of the algo-
rithm must be slightly modified. Assume that r is odd (which is often the case in
practice where r is prime), in the last iteration we have n0 = r0 = 1 and the final
point which is computed (Steps 6 and 7) is T + P = [r]P = O. Therefore, just

D2.1 — Promising Algorithms for Pairing Computations 31

before this last computation, we have T = [r − 1]P = −P , and f = fr−1,P (Q)
where fr−1,P satisfies:

div(fr,P) = div(fr−1,P) + (P) + (−P) = div(fr−1,P) + div(vP) .

Steps 6 and 7 in the last iteration are then simply replaced by f ← f · vP (Q) (that
is f ← f · (xQ − xP)).

Also, note that for Miller’s algorithm to behave well, T must be different from
Q and O at every steps of the algorithm. These requirements are always satisfied
in practice where we have Q /∈ 〈P 〉 and T = [i]P with i < r at all (but the last)
iterations.

Standard optmizations. Miller’s algorithm can be optimized in the same ways
as classical scalar multiplication algorithms for elliptic curves. One can use a
NAF representation of the exponent and/or windowing techniques (see for instance
[MvOV97]) or select an order r which has a low Hamming weight. Points P and
Q may also be represented in projective coordinates to speed up the computa-
tion. Fast pairing computations using different coordinate systems are addressed
in [IT02, CSB04, ALNR09]. The coordinate system leading the best efficiency
should generally depend of the different parameters as well as on the additional
optimizations which are used (see Section 5.3). A further possible optimization
when the point P is fixed is to make use of precomputation. When a large amount
of memory is available, one can precompute all the intermediate values of T and of
the coefficients of `T,T and v[2T] (as we will see in Section 5.3, the latter can often
be ignored). If less memory is available, one may still use the precomputation-
based exponentiation techniques described [BGMW92].

In the following, we address efficient way of computing pairings based on Miller’s
algorithm. As this algorithm processes elements of the extension field Fqk , we first
describe efficient extension field arithmetic.

5.2 Extension field arithmetic

In this section, we recall some basics about extension fields arithmetic. Every
extension Fqk of Fq, can be represented as Fq[x]/(p(x)) where p is a k-degree
polynomial which is irreducible of Fq. This means that every element a ∈ Fqk can
be seen as a polynomial a =

∑k−1
i=0 aix

i whose coefficients ai lie in Fq, and hence
a can be represented as a vector of k elements in Fq: (ak−1, . . . , a1, a0).

This representation makes clearly appear that Fqk is a k-dimensional vector
space over Fq. In particular the sum of two elements a and b in Fqk can be com-
puted as c = a + b =

∑
i cix

i where ci = ai + bi for every i. Also multiplying
a ∈ Fqk by a scalar c ∈ Fq is done by multiplying every ai by c. On the other hand,
the product of two elements a and b in Fqk is defined as c = ab mod p(x). Denot-
ing p(x) = xk − p′(x) (p is k-degree and we can assume that it is unitary without
loss of generality), the reduction modulo p(x) consists in replacing every mono-
mial ck+ix

k+i in the product of a and b by ck+ix
ip′(x) (as xk ≡ p′(x) mod p(x)).

32 ANR Project ECLIPSES — Restricted to ECLIPSES

Example 5.1. Consider the quadratic extension Fq2 ' Fq[x]/(x2 − α) where α ∈
Fq is such that x2−α is irreducible. Let a, b ∈ Fq2 with polynomial representation
a = a1x+ a0 and b = b1x+ b0. The product c = ab satisfies:

c = a1b1x
2 + (a0b1 + a1b0)x+ a0b0 mod p(x)

= (a0b1 + a1b0)x+ (a1b1α+ a0b0) .

The efficiency of such a multiplication then depends on p. For instance, if
p(x) = x2−βx−α then the product c = ab in the previous example becomes c =
(a0b1+a1b0+a1b1β)+(a1b1α+a0b0) which requires one additional multiplication
by β and one additional addition compared to the case p(x) = x2 − α. In general,
for a k-degree extension represented as Fq[x]/(p(x)), the more coefficients of p are
0, the more efficient the reduction is. It is clear that the degree-0 coefficient of p
is non-zero otherwise x | p(x) and p is not irreducible. Therefore, when possible,
one should choose p(x) = xk − α. We have the following theorem from [LN97].

Theorem 5.1 (Th. 3.75 [LN97]). Let k ≥ 2 be an integer and let α ∈ F∗q with
order denoted ord(α). Then xk − α is irreducible over Fq[x] if and only if the two
following conditions are satisfied: (i) every prime factor pi of k verifies pi | ord(α)
and pi - (q − 1)/ord(α), (ii) if 4 | k then q ≡ 1 mod 4.

Note that when α is small, a multiplication by α is far more efficient than a
regular multiplication over Fq. Therefore, in addition of choosing p(x) = xk − α,
one shall prefer taking α as small as possible.

In what follows, we detail some efficient arithmetic over quadratic and cubic
extension fields.

Quadratic extension arithmetic. Trivial implementation of the multiplication
over a quadratic extension field makes use of four multiplications in the base field
(see Example 5.1). It is actually possible to do it in three multiplications thanks to
the Karatsuba-Ofman method which is based on the trick that once a1b1 and a0b0
have been computed, a0b1 + a1b0 can be computed in a single multiplication as
a0b1 + a1b0 = (a1 + a0)(b1 + b0)− a1b1 − a0b0. The Karatsuba-Ofman method
hence computes the product of two degree-2 polynomials a1x + a0 and b1x + b0
as:

(a1x+ a0)(b1x+ b0) = t1x
2 + (t2 − t1 − t0)x+ t0 ,

where t0 = a0b0, t1 = a1b1 and t2 = (a1 + a0)(b1 + b0).
Consider a quadratic extension Fq2 ' Fq[x]/(x2−α). Keeping same notations

as above, we get:

(a1x+ a0)(b1x+ b0) = (t2 − t1 − t0)x+ (t0 + αt1) .

Assuming that α is small, the cost of the Karatsuba-Ofman method is hence of 3
multiplications over Fq.

Using a similar trick, the square can be computed in two multiplications as:

(a1x+ a0)2 = (2t1)x+ (t2 − (α+ 1)t1) ,

D2.1 — Promising Algorithms for Pairing Computations 33

where t1 = a0a1 and t2 = (a1 + a0)(αa1 + a0).
Finally the inversion in Fq2 ' Fq[x]/(x2−α) can be computed in two squares,

two multiplications and one inversion in Fq as:

(a1x+ a0)−1 =
a2

1α− a2
0

(a1x− a0)
.

Cubic extension arithmetic. For the multiplication over cubic extension field,
one can use the Toom-Cook method which computes the product of two degree-3
polynomials in five multiplications whereas the trivial method requires nine mul-
tiplications. Let a(x) = a2x2 + a1x + a0, let b(x) = b2x

2 + b1x + b0, and let
c(x) = a(x)b(x) =

∑4
i=0 cix

i. The Tomm-Cook algorithm interpolates the co-
efficients ci by evaluating c(x) at five different values: ∞, 0, 1, 2 and −1 (where
c(∞) means limx→∞ c(x)/x = c4). More precisely, we have:

a(∞)b(∞)
a(0)b(0)
a(1)b(1)
a(2)b(2)

a(−1)b(−1)

 =

c(∞)
c(0)
c(1)
c(2)
c(−1)

 =

1 0 0 0 0
0 0 0 0 1
1 1 1 1 1
16 8 4 2 1
−1 1 −1 1 −1

 ∗

c4

c3

c2

c1

c0

which gives:

c4

c3

c2

c1

c0

 =

1 0 0 0 0
0 0 0 0 1
1 1 1 1 1
16 8 4 2 1
−1 1 −1 1 −1

−1

∗

a(∞)b(∞)
a(0)b(0)
a(1)b(1)
a(2)b(2)

a(−1)b(−1)

The Toom-Cook method hence consists in computing the five products:

a(∞)b(∞) = a2b2, a(0)b(0) = a1b1,
a(1)b(1) = (a2 + a1 + a0)(b2 + b1 + b0),

a(2)b(2) = (4a2 + 2a1 + a0)(4b2 + 2b1 + b0),
and a(−1)b(−1) = (a2 − a1 + a0)(b2 − b1 + b0),

from which the ci’s are then evaluated as simple linear combinations.
Considering a cubic extension Fq3 ' Fq[x]/(x3 − α), we get:

ab = c2x
2 + (αc4 + c1)x+ (αc3 + c0) .

For squaring, Chung and Hasan proposed a Toom-Cook-based method which en-
ables to square in Fq3 using four squares and one multiplication over Fq [CH06].
This method is therefore advantageous over the classical Toom-Cook method if
squaring over Fq is faster than multiplying. For the inversion over Fq3 a method is
given in [LH00] which requires three squares, six multiplications and one inversion
over Fq.

Lazy reduction. The above methods for fast arithmetic over extension fields can

34 ANR Project ECLIPSES — Restricted to ECLIPSES

be improved using lazy reductions [LH00]. If q is a prime, a multiplication over
Fq can be computed by a multiplication over the integers followed by a reduction
modulo q whose cost is usually significant compared to the multiplication cost.
While adding several products or squares over Fq as in the above methods, one can
perform the reduction modulo q only once after all non-reduced values have been
added. The same principle applies with a polynomial modular reduction rather
than an integer modular reduction if q is a prime power.

Pairing-friendly fields. The methods described above allow one to compute the
product efficiently over any extension Fqk where k = 2i3j using a tower field rep-
resentation. Indeed, for such a value of k, Fqk can be represented as Fqk/2 [x]/(x2−
α) and the product over Fqk is computed in three multiplications over Fqk/2 by
Karatsuba-Ofman. The field Fqk/2 is then represented as Fqk/6 [x]/(x3 − β) and
the product over Fqk/2 is computed in five multiplications over Fqk/6 using Toom-
Cook. Iterating the same principle we get that a multiplication over Fqk such that
k = 2i3j can be computed with 3i5j multiplications over Fq. However we omit
some requirement: for polynomials (x2 − α) and (x3 − β) to exist which are irre-
ducible over Fq (or over any extension of Fq), Theorem 5.1 implies that we must
have q ≡ 1 mod 12. Then α and β can be taken to be a non-square in Fq and a
non-cube in Fq respectively, and to be as small as possible to get efficient mod-
ular reductions. This motivates the following definition of pairing-friendly fields
[KM05]: an extension field Fqk is pairing-friendly if q ≡ 1 mod 12 and if k = 2i3j

for some i and j.

5.3 Tate pairing optimizations

The Tate pairing is usually considered to be more efficient than the Weil pair-
ing. This is in part due to several optimizations which enable to substantially speed
up the Tate pairing computation. In rest of this document, we therefore restrict our
description to the Tate pairing and its various optimizations.

Let E be an elliptic curve defined over Fq and let r a positive integer such
that r | #E(Fq) and gcd(r, q) = 1. Let k denote the embedding degree of E
with respect to r. As we have seen in Section 5.1, the Tate pairing of two points
P,Q ∈ E(Fqk)[r] is defined as:

tr(P,Q) =

(
fP (Q+R)

fP (R)

)(qk−1)/r

, (16)

where fP is any function with divisor div(fP) = r(P) − ([r]P) and R is an aux-
iliary point in E(Fqk)\{O, P,Q}. The trivial way of computing the Tate pairing
then consists in applying Miller’s algorithm to evaluate fP (Q+R)/fP (R) (which
can be done within one single Miller loop) and in performing an exponentiation of
the result to the (qk − 1)/r over Fqk .

In the following, we shall generally assume that P is a rational point (i.e. it
lies in E(Fq)). A direct consequence of this restriction is that only the Steps 3
and 6 in Algorithm 1 involve operations over the extension field Fqk . And more

D2.1 — Promising Algorithms for Pairing Computations 35

precisely, looking at the detail of those steps (see Section 5.1) only the operations
involving the coordinates of Q are operation in Fqk . The remaining operations are
all performed in Fq and are hence substantially faster compared to Fqk operations
(recall that according to Section 5.2, even if Fqk is a pairing-friendly field with
k = 2i3j , a multiplication over Fq is still 3i5j faster than a multiplication over
Fqk).

Some optimizations describe hereafter shall further require that k is even or at
least greater than 1.

Auxiliary point elimination. This optimization requires P rational and k > 1.
Then we have the following result.

Theorem 5.2 ([BKLS02]). If k > 1 then for every P ∈ E(Fq)[r] andQ ∈ E(Fqk),
we have:

tr(P,Q) = fP (Q)(qk−1)/r.

According to the previous theorem – and assuming the embedding degree to
be greater than 1 – we can eliminate the auxiliary point R is the expression of the
Tate pairing (16), which makes Miller’s algorithm about twice faster.

Irrelevant factors elimination. At the end of the Miller loop, once fP (Q) has
been computed, it is raised to the power of (qk−1)/r. Since by definition r - q−1
and since q − 1 | qk − 1, we have q − 1 | (qk − 1)/r. This implies that the
exponentiation to the (qk − 1)/r maps every element of Fq to 1. As a result, for
every c ∈ Fq, we have (cfP (Q))(qk−1)/r = fP (Q)(qk−1)/r. Therefore, every factor
c appearing in the computation of fP (Q) can be discarded. In fact, this observation
can be generalized to any extension of Fq which is a strict subfield of Fqk (as we
have r - qm − 1 and qm − 1 | qk − 1), and irrelevant factors are actually every
c ∈ Fqm where m < k.

Although the irrelevant factor elimination may not seem useful to speed up
the computation described in Section 5.1, it is the basis of some of the subsequent
optimizations.

Denominators elimination. The denominator elimination consists in rendering
denominators in Steps 4 and 7 of Algorithm 1 irrelevant in such a way that they
can be discarded from the computation. This is done by ensuring that the x-
coordinate from Q lies in a strict subfield Fqm of Fqk which implies that v[2]T (Q)
and vT+P (Q) also lie in Fqm , namely they are irrelevant. Steps 4 and 7 of Algo-
rithm 1 can then be replaced by f ← f2 ·`T,T (Q) and f ← f ·`T,P (Q) respectively.
Ensuring that xQ lies in Fqm (Fqk can be done in two ways depending on whether
the elliptic curve E is supersingular or not.

When E is supersingular, Q is usually chosen as a point from G2 = 〈φ(P)〉
where φ is a distortion map (see Section 3.4). In that case ensuring xQ ∈ Fqd (Fqk
can be done by choosing a distortion map which maps the x-coordinate of in Fqm
(and preferably in Fq which also renders the computation of `T,T (Q) and `T,P (Q)
more efficient). Examples of such distortion maps are given in [BKLS02, Gal05].

36 ANR Project ECLIPSES — Restricted to ECLIPSES

When E is ordinary, Q is chosen to lie in a subgroup G2 of E[r] which may
be either the trace-zero subgroup (in the type III setting) or any other non-rational
subgroup (in the type II setting). The following proposition shows that the former
case enables denominator elimination when k is even.

Proposition 5.3 ([BLS03]). Let k be even and let m = k/2. For every Q =
(xQ, yQ) ∈ E(Fqk)[r], the three following properties are equivalent:

(i) Tr(Q) = 0,
(ii) Φm

q (Q) = −Q,
(iii) xq

m

Q = xQ (i.e. xQ ∈ Fqm) and yq
m

Q = −yQ.

Proof. (ii) ⇒ (i) holds by definition of the trace map. (i) ⇒ (ii) results from the
fact the trace-zero subgroup coincide with the q-eigenspace of the Frobenius which
implies Φm

q (Q) = [qm]Q and hence Φm
q (Q) = −Q as we have qm ≡ −1 mod r.

Finally, (iii) is clearly equivalent to (ii).

Note that when G2 cannot be taken as the trace-zero subgroup (typically in
the type II setting), one can define the pairing as ê(P,Q) = e(P, φ(Q)) where
φ = [1]−Φq. In that case, φ(Q) = Q−Φq(Q) belongs to the trace-zero subgroup
for every Q ∈ E[r]\E(Fq)[r] (see Section 2.6).

Twisted representation. This optimization consists in taking G2 as the image of
a subgroup of order r of a twist of E (see Section 2.5) over a strict subfield of
Fqk . Assume that E has a twist of degree d with d | k (if k is even we know that
E has such a twist of degree at least 2) and denote m = k/d. By Proposition
2.7, E has a unique twist E′ of degree d such that r | #E′(Fqm) and there exists
ξ ∈ d

√
F∗qm ⊂ Fqk such that the isomorphism [ξ] : E′ → E : (x, y) 7→ (xξ2, yξ3)

maps E′(Fqm)[r] to E(Fqk)[r]. The group G2 can then be defined as G2 =
[ξ](E′(Fqm)[r]). Such a choice implies a more compact representation of the points
in G2 and a more efficient pairing computation. The efficiency of the pairing com-
putation holds on the one hand since (assuming k is even) xξ2 lies in Fqk/2 which
enables the denominator elimination optimization described above. By Proposi-
tion 5.3, we actually have that G2 is the trace-zero subgroup and the pairing is of
type III (see Section 3.4). On the other hand, the point Q ∈ G2 = [ξ](E′(Fqm)[r])
which enters in the Miller loop (see Algorithm 1) also has a compact representation
which further speeds up the computation. Indeed, Fqk is the splitting field of ξ and
elements of Fqk can be represented as polynomials of degree d over Fqm [ξ]. Then
the points of G2 have coordinates whose representation over Fqm [ξ] have a single
non-zero monomial (xξ2 or yξ3), namely which can be represented by one single
element in Fqm . These points are hence d times more compact than random points
over E(Fqk), and operations involving coordinates of Q ∈ G2 in the Miller loop
are faster.

Final Exponentiation. Once fr,P (Q) has been computed using Miller’s algorithm,
it must be raised to the power of (qk−1)/r to get the Tate pairing value. As fr,P (Q)
lies in the full extension field Fqk , this final exponentiation is slow. Nevertheless,
it can be significantly speeded up using standard tricks. The starting point of these

D2.1 — Promising Algorithms for Pairing Computations 37

optimizations is that the Frobenius map Φq over Fqk can be efficiently evaluated
compared to a classical exponentiation.

Proposition 5.4 (Action of Frobenius map). Let k be a positive integer and assume
that there exists α ∈ Fq such that xk − α is irreducible over Fq[x]. Let a =∑

i aix
i ∈ Fq[x]/(xk − α) ' Fqk . The jth power Frobenius Φj

q : a 7→ aq
j

satisfies:

Φj
q(a) =

k−1∑
i=0

aiα
biqj/kcxiq

j mod k . (17)

The straightforward evaluation of (17) is clearly faster than an exponentiation
to some random exponent of size j log(q). Furthermore, it can be optimized in vari-
ous ways. Assume for instance that q ≡ 1 mod k, then we have iqj mod k = i and
biqj/kc = i(qj−1)/k. In that case, one can compute β = α(qj−1)/k mod q−1 using
an exponentiation over Fq and then compute the Frobenius Φj

q(a) =
∑k−1

i=0 aiβ
ixi.

As we have βk/2 = α(qj−1)/2 = −1,computing Φj
q(a) only requires 3k/2 multi-

plications over Fq. Another optimization consists in using some α having a small
order over F∗q . For instance if q ≡ 3 mod 4 and if k is a power of 2, then xk + 1 is
irreducible over Fq[x] and one can take α = −1. In that case, αbiq

j/kc ∈ {−1, 1}
and the evaluation of (17) is only a few subtractions.

Using the fact that the Frobenius computation is efficient, it is possible to speed
up the final exponentiation by using multi-exponentiation techniques [Möl01]. De-
noting (qk−1)/r = e0 +e1q+e2q

2 + · · ·+ek−1q
k−1, one can precompute the f q

j

by k−1 applications of the Frobenius and then compute f (qk−1)/r =
∏n
j=0(f q

j
)ej

using a multi-exponentiation algorithm. Such an exponentiation processes about
log q square-and-multiply iterations, which is around k times faster than a classical
exponentiation over Fqk . However, the memory requirements of such an algorithm
jeopardizes its use in constrained devices such as smart cards.

A further optimization is still possible which consists in decomposing the final
exponentiation. Assume that k is even, we have qk − 1 = (qk/2 − 1)(qk/2 +

1) and by definition of k, we deduce r | qk/2 + 1 and therefore f (qk−1)/r =

(f q
k/2−1)(qk/2+1)/r. The exponent may be further split as we have φk(q) | qk/2 +1

where φk denotes the kth cyclotomic polynomial 3. The final exponentiation f ←
f (qk−1)/r can hence be performed in three steps as:

f ← f q
k/2−1

f ← f (qk/2+1)/φk(q)

f ← fφk(q)/r

The first exponentiation requires a Frobenius computation and an inversion
over Fqk . The inversion can be efficiently computed since Fqk is a quadratic ex-
tension field (see Section 5.2). The second exponentiation enables to lighten the
cost of the third exponentiation which is the slowest part (called the hard expo-
nentiation). The second exponentiation can be processed with a few Frobenius

3. This holds since φk(q) | qk − 1 and φk(q) - qk/2 − 1.

38 ANR Project ECLIPSES — Restricted to ECLIPSES

computations and a few multiplications over Fqk as we have:

qk/2 + 1

φk(q)
=

1 if k is a power of 2
q + 1 if k/2 is prime
q2 + 1 if k = 12
q3 + 1 if k = 18
q4 + 1 if k = 24
. . .

(18)

Note that if k is a power of 2 then we have φk(q) = qk/2 − 1 and there is no sec-
ond exponentiation. Otherwise, the second exponentiation enables saving n log(q)
iterations in the hard exponentiation where n ∈ [1, 4] for k ≤ 24.

Finally the third exponentiation requires a classical (multi-)exponentiation al-
gorithm and is expected to take most of the required time for the final exponentia-
tion. Nevertheless it can be performed with optimized squaring formulae [GPS06].
In fact, the value f (qk−1)/φk(q) in output of the second exponentiation belongs to
the subgroup of F∗

qk
of order φk(q) which is called cyclotomic subgroup of Fqk and

denotedGφk(q). On this subgroup, squaring can be optimized. Assume for instance
that k = 2i3j (typically, Fqk is a pairing-friendly field–see Section 5.2). Then the
kth cyclotomic polynomial satisfies φk(q) = qk/3 − qk/6 + 1 which implies that
every a ∈ Gφk(q) satisfies:

aq
k/3 · a− aqk/6 =

k−1∑
i=0

vix
i = 0 .

The optimization consists in rewriting the squaring formulae of Fqk in a efficient
form modulo the above equation. More precisely, we have that (i) every vi can be
expressed as a polynomial function vi = fi(a0, a1, . . . , ak−1) where the ai’s are
the coefficient of a, (ii) every vi equals 0. Let us now denote a2 =

∑k−1
i=0 bix

i and
bi = gi(a0, a1, . . . , ak−1). The evaluation of each gi in the squaring of a can be
replaced by the evaluation of gi+

∑
j `jfj where the `j’s are some coefficients over

Fqk . This enables to derive more efficient squaring formulae over Gφk(q). Explicit
formulae for squaring over cyclotomic subgroups of various extension fields are
given in [SL02, GPS06, GS10].

5.4 The Eta and Ate pairings

The Eta and the Ate pairings are variants of the Tate pairing which have been
introduced in [BGOS07, HSV06]. The main purpose of these alternative pairings
is to speed up the computation by reducing the number of iterations in the Miller
loop.

Let E be an elliptic curve defined over Fq and let r be a large prime such
that r | #E(Fq). Let t = q + 1 − #E(Fq) be the trace of the Frobenius and
let denote T = t − 1. Let G1 be the rational subgroup of the r-torsion of E
i.e. G1 = E[r] ∩ Ker(Φq − [1]) and let G2 to be the trace-zero subgroup i.e.
G2 = E[r] ∩Ker(Φq − [q]).

D2.1 — Promising Algorithms for Pairing Computations 39

Consider the mth power of the Tate pairing for some m:

tr(P,Q)m = fr,P (Q)m(qk−1)/r = fmr,P (Q)(qk−1)/r

where the second equality holds from fmr,Q = fmr,Qfm,[r]Q and [r]Q = O. As
the Tate pairing is non-degenerate, its mth power is also non-degenerate as long as
m - r. Then define m = (T k− 1)/r (as T ≡ q mod r we indeed have r | T k− 1).
We get:

tr(P,Q)m = fTk−1,P (Q)(qk−1)/r = fTk,P (Q)(qk−1)/r ,

where the last equality holds since div(fTk−1,P) = div(fTk,P) = (T k − 1)(P)−
(T k − 1)(O). It can then be checked that we have:

fTk,P = fT
k−1

T,P fT
k−2

T,[q]P · · · fT,[qk−1]P . (19)

This relation is the base of the Eta and the Ate pairings.

The Eta pairing. Assume that E is supersingular. The Eta pairing is defined as:

ηT : G1 ×G2 −→ µr ⊂ F∗
qk

(P,Q) 7−→ fT,P (Q)(qk−1)/r

Theorem 5.5 ([BGOS07, HSV06]). For every P ∈ G1 and Q ∈ G2, the Eta
pairing satisfies:

ηT (P,Q)c = tr(P,Q)m ,

where c =
∑k−1

i=0 T
k−1−iqi ≡ kqk−1 mod r. In particular, ηT is non-degenerate

if and only if m - r.

Proof. Let Φ̂q be the dual of the Frobenius, namely Φ̂q ≡
(
q 0
0 1

)
in the base

(P,Q). We have:

fT,[qi]P (Q) = f
T,Φ̂i

q(P)
(Q) = f

T,Φ̂i
q(P)
◦ Φ̂i

q(Q) ,

where the first equality holds since Φ̂i
q acts as multiplication by qi on P , and the

second equality holds since Φ̂i
q acts trivially on Q. Then, as E is supersingular, we

haveE[qi] = {O}which implies that Φ̂i
q has a trivial kernel (since Φ̂i

q = Φ−iq ◦[qi])
and Proposition II.3.6 in [Sil86] yields:

div(f
T,Φ̂i

q(P)
◦ Φ̂i

q) = deg(Φ̂i
q)div(fT,P) = div(f q

i

T,P) .

Therefore, fT,[qi]P (Q) equals f q
i

T,P (Q) up to some constant in Fqk and Theorem
5.5 then results from (19).

The Eta pairing is evaluated by first computing fT,P (Q) and then raising it
to the power of (qk − 1)/r. Compared to the Tate pairing, the computation of
fT,P (Q) is likely to be faster than the computation of fr,P (Q). Indeed, if we have

40 ANR Project ECLIPSES — Restricted to ECLIPSES

log(r) ≈ log(q) then log(T) is about twice smaller than log(r) implying that the
Miller loop is twice faster for the Eta pairing.

The drawback of the Eta pairing is that it is only non-degenerate for supersin-
gular elliptic curves. If E is ordinary, then Φ̂q does not have a trivial kernel and
the above proof does not hold anymore. To overcome this issue, one can invert P
and Q – i.e. computing fT,Q(P). Then the above proof holds using the Frobenius
endomorphism rather that its dual. This approach yields the Ate pairing.

The Ate pairing. The Ate pairing is defined as:

aT : G1 ×G2 −→ µr ⊂ F∗
qk

(P,Q) 7−→ fT,Q(P)(qk−1)/N

Theorem 5.6 ([HSV06]). For every P ∈ G1 andQ ∈ G2, the Ate pairing satisfies:

aT (P,Q)c = tr(Q,P)m , (20)

where c =
∑k−1

i=0 T
k−1−iqi ≡ kqk−1 mod r. In particular, aT is non-degenerate

if and only if m - r.

Proof. The proof of the above theorem is the same as the proof of Theorem 5.5 but
replacing the dual of the Frobenius Φ̂q by the Frobenius Φq.

Remark. While inverting the points P andQ, Theorem 5.2 does not apply anymore
and for most functions fr,Q, we have:

tr(Q,P) =

(
fr,Q(P +R)

fr,Q(R)

)(qk−1)/r

6= fr,Q(P)(qk−1)/r .

Functions fr,Q verifying the equality are those which satisfy fr,Q(O) ∈ Fq. Sim-
ilarly, the function fT,Q used in the definition of the Ate pairing must satisfy
fT,Q(O) ∈ Fq otherwise (20) does not hold. Fortunately, it is not hard to en-
sure fT,Q(O) ∈ Fq in practice. It suffices to take the y-coordinate coefficient of
every line function ` involved in Miller’s algorithm to lie in Fq. This is the case of
the description given in Section 5.1 where those coefficients are always −1.

The drawback of the Ate pairing is that computing fT,Q(P) is slower than
computing fT,P (Q) as the point Q lies in the full extension field. It may even be
slower than computing fr,P (Q) (as in the Tate pairing) depending on the values of
r, T and k. One way to circumvent this drawback is by using the properties of the
twist (see Section 2.5).

The twisted Ate pairing. Assume that E has a twist E′ of degree d with d | k
and denote e = k/d. Let G2 be defined according to the twisted representation
described in Section 5.3 (in particular if k is even d can be taken even and G2 is
the trace-zero subgroup). Then, the twisted Ate pairing is defined as:

atT e : G1 ×G2 −→ µr ⊂ F∗
qk

(P,Q) 7−→ fT e,P (Q)(qk−1)/r

D2.1 — Promising Algorithms for Pairing Computations 41

Theorem 5.7 ([HSV06]). For every P ∈ G1 and Q ∈ G2, the twisted Ate pairing
satisfies:

atT e(P,Q)c = tr(Q,P)m ,

where c =
∑d−1

i=0 T
d−1−iqi ≡ dqe(d−1) mod r. In particular, atT e is non-degenerate

if and only if m - r.

The proof of the above theorem is similar to the proof of Theorem 5.5 but the
last part of the proof is based on the fact that fT e,[T e]P (Q) = fT e,P (Q)q

e
which

holds by the properties of the twist (see [HSV06] for details).
Clearly, the twisted Ate pairing is faster than the Tate pairing if the trace is

small enough to satisfy log(t) ≤ log(r)/e.

5.5 Generalizations and optimal pairings

Some generalizations and improvements of the Eta, Ate and twisted Ate pair-
ings have been proposed in [MKHO07, ZZH08, Ver10].

In [MKHO07], it is argued that instead of taking T , one can take any λ such
that λ ≡ q mod r. Then, the authors give some families of pairing-friendly curves
for which log(q mod r) is smaller than log(t) and the choice of λ = q mod r
yields a faster pairing.

The authors of [ZZH08] suggest to use λi = qi mod r and, by a similar deriva-
tion as above, they show that:

(P,Q) 7→ fλi,Q(P)(qk−1)/r

is a non-degenerate pairing if and only if m = (λk
′
i − 1)/r is not a multiple

of r where k′ = k/ gcd(i, k). They call this pairing the Atei pairing (similar
generalizations also hold for the Eta and the twisted Ate pairing). As shown in
[ZZH08], some of the existing families of pairing-friendly curves have some λi
which are such that log(λi) ≤ log(r)/ϕ(k) (leading to a pairing with a Miller
loop which is ϕ(k) times shorter than the one of the Tate pairing). In fact, since r
divides φk′(λi) where φk′ is the k′th cyclotomic polynomial of degree ϕ(k′), we
have log(λi) ≥ log(r)/ϕ(k′). Therefore, log(r)/ϕ(k) Miller iterations is actu-
ally the best that can be obtained following the above approach. This motivates
the definition of optimal pairings in [Ver10] as pairings which can be evaluated in
log(r)/ϕ(k) + ε(k) Miller iterations (with ε(k) ≤ log(k)).

Finally [Ver10] further generalizes the Ate pairing approach by considering
mth powers of the Tate pairing for some m such that mr have base-q expansion
with small coefficients.

Theorem 5.8 ([Ver10]). Let λ = mr with r - m and write λ =
∑l

i=0 ciq
i then:

a(ci)i
: G1 ×G2 −→ µr ⊂ F∗

qk

(P,Q) 7−→
(∏l

i=0 fci,Q(P)q
i ·
∏l−1
i=0 `i(P)/vi(P)

)(qk−1)/r

42 ANR Project ECLIPSES — Restricted to ECLIPSES

where `i = `[si+1]Q,[ciqi]Q, vi = v[si]Q and si =
∑l

j=i cjq
j , defines a pairing

which is non-degenerate if and only if:

mkqk−1 6≡ ((qk − 1)/r)
l∑

i=0

iciq
i−1 mod r .

Note that if k is even, then the denominator elimination applies and the vi’s
can be ignored. Also, in the computation of [ciq

i]Q (which is required to evaluate
`i(P)), one should replace all the multiplications by qi by Frobenius actions.

The approach proposed in [Ver10] then consists in searching a λ having a q-
base expansion with small coefficients ci’s to render the computation of the above
pairing efficient. An algorithm is proposed to perform such a search and strong
evidence is given than the lower bound for the number of Miller iterations in the
obtained pairings is around log(r)/ϕ(k). This confirms the optimality property of
pairings reaching this value. Finally [Ver10] shows that several existing families of
pairing-friendly elliptic curves have such optimal pairings and give their formulae.

D2.1 — Promising Algorithms for Pairing Computations 43

6 Summary and recommendations

A pairing is a function e which maps a pair of points of an elliptic curve E
defined over some finite field Fq to the multiplicative group of a finite extension
Fqk . Moreover, a pairing is bilinear – e([a]P, [b]Q) = e(P,Q)ab for all points
P and Q on the curve and for all integers a and b – and it is non-degenerate –
e(P,Q) 6= 1 for some P andQ. Famous examples of pairings include the Weil and
the Tate pairings which are developed in Section 3. Pairings used in cryptography
are usually restricted to a pair of subgroups G1 and G2 of the points of E which
are chosen to have a large prime order r dividing #E(Fq), so that the discrete
logarithm is hard to compute on these groups. The embedding degree k of E with
respect to r is the smallest integer such that the set of all the points of order r in E
is included in E(Fqk) (which is also the smallest integer such that r | qk− 1). This
set, denoted E[r] and called the r-torsion of E, contains r2 + 1 distinct subgroups
of order r, among which, one and only one is included inE(Fq). One usually takes
G1 to be the latter subgroup while G2 is taken as a distinct subgroup of E[r]. Then
the Weil and the Tate pairings defined non-degenerate bilinear maps from G1×G2

into GT = µr, the subgroup of F∗
qk

containing all the rth roots of unity of Fq. It is
interesting to note that, by primality of r, there essentially exists one single pairing
e : G1 × G2 → GT . More precisely, every pairing e′ : G1 × G2 → GT is a
power of e and there exist r − 1 different non-degenerate powers (including the
restrictions of the Weil and the Tate pairings to G1 ×G2).

Pairings have originally been used to attack elliptic curve cryptosystems as they
allow to transport the discrete logarithm problem from E[r] to µr ⊂ F∗

qk
where it

may be more easy to solve (depending on the value of k). Nevertheless, it soon
appeared that pairings have much greater potential for constructive applications in
cryptography. As explained in Section 4, new intractable problems based on pair-
ings were revealed making possible to construct new cryptographic primitives such
as one-round tripartite key-agreement, identity-based encryption and short digital
signatures. However, an important issue arose with the emergence of pairing-based
cryptography, which regards the efficiency of the computation of pairings. Straight-
forward implementations of the Weil or the Tate pairing are rather inefficient which
was considered at the beginning as a major drawback of pairing-based protocols.

Motivated by this issue, a consistent research work has been done since then to
optimize the computation of pairings. Several improvements have been published
making the computation of pairings much more efficient. As explained in Section
5, promising algorithms for computing pairings proposed so far are all based on
Miller’s algorithm which is a kind of binary exponentiation. In particular, this al-
gorithm can be seen as a scalar multiplication of the point P by the order r with
some additional computation at every loop iteration. This additional computation
involves the point Q as well as the intermediate results of the scalar multiplica-
tion of P to update a value which equals fP (Q) at the end of the loop (where
fP : E(Fqk) → Fqk is a function parametrized by P). The pairing value is either
a power of fP (Q) or a product of several such functions (in which case several
Miller loops are required). A first way to optimize the computation then consists
in using standard optimizations of exponentiation algorithms (exponent recoding,

44 ANR Project ECLIPSES — Restricted to ECLIPSES

windowing, ...) or in choosing the order r to have a small Hamming weigh. Also,
several coordinate systems can be used for points P and Q. More generally, the
pairing arithmetic is composed of the classical arithmetic over E(Fq) (including
operations over Fq), as well as operations over Fqk which are necessary to the up-
date of fP (Q) at every loop iteration. Elements in Fqk are represented as vectors
with k coordinates over Fq and operations over Fqk are naturally more costly than
operations over Fq. For instance a multiplication over Fqk usually requires from
k1.5 to k2 multiplications over Fq, plus several additions. To obtain a fast pairing
computation it is therefore important to choose an extension field Fqk with effi-
cient arithmetic (e.g. a pairing-friendly field). In such a context, the Tate pairing
appeared to be more efficient to compute than the Weil pairing. The former, which
is defined as (P,Q) 7→ fP (Q)(qk−1)/r, was further optimized in various ways. It
was shown that part of the computation over Fqk in Miller’s algorithm (the denom-
inators) can be removed when k is even. Also, Q has a twisted representation with
coordinates over Fqk/d when E admits a twist of degree d, for some d ≤ 6. Using
such a representation speeds up the computation and decreases the memory con-
sumption. On the other hand, the final exponentiation can take advantage of fast
Frobenius computation and efficient cyclotomic subgroup arithmetic to achieve
good timings. Finally, some variants of the Tate pairing have been introduced with
a lower number of Miller loop iterations. It was then argued that optimal pairings
exist which can be computed within log(r)/ϕ(k) Miller loop iterations (compared
to log(r) for the Tate pairing).

All these optimizations can render a pairing computation fairly efficient. This
is even true in a constrained environment such as a smart-card, provided that it at
least includes a hardware co-processor for the multiplication over Fq. The required
security level yields a minimum size for q and a minimum value for k. The actual
parameters can then be chosen in order to make the various optimizations possible.
In general, one shall prefer a pair (q, k) for which Fqk has efficient arithmetic, an
even k for so-called denominator elimination in the Miller loop, a curve E which
has a 6th degree twist (and a k multiple of 6) for efficient twisted representation,
and a curve E which has optimal pairings.

D2.1 — Promising Algorithms for Pairing Computations 45

References

[ALNR09] Christophe Arene, Tanja Lange, Michael Naehrig, and Christophe
Ritzenthaler. Faster Computation of the Tate Pairing. Cryptology
ePrint Archive, Report 2009/155, 2009. http://eprint.iacr.
org/. To appear in Journal of Number Theory.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-Based Encryption
from the Weil Pairing. In J. Kilian, editor, Advances in Cryptology –
CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science,
pages 213–229. Springer, 2001.

[BF03] Dan Boneh and Matthew K. Franklin. Identity-Based Encryption
from the Weil Pairing. SIAM J. Comput., 32(3):586–615, 2003.

[BGMW92] Ernest F. Brickell, Daniel M. Gordon, Kevin S. McCurley, and
David Bruce Wilson. Fast Exponentiation with Precomputation (Ex-
tended Abstract). In Rainer A. Rueppel, editor, Advances in Cryptol-
ogy – EUROCRYPT ’92, volume 658 of Lecture Notes in Computer
Science, pages 200–207. Springer, 1992.

[BGOS07] Paulo S. L. M. Barreto, Steven D. Galbraith, Colm O’Eigeartaigh,
and Michael Scott. Efficient pairing computation on supersingular
Abelian varieties. Desings, Codes and Cryptography, 42(3):239–271,
2007.

[BIPV10] Anja Becker, Sorina Ionica, Jérôme Plût, and Karine Villegas. Re-
view of cryptographic protocols based on elliptic curves. Technical
report, ANR Project ECLIPSES, 2010. Deliverable 1.1.

[BK98] R. Balasubramanian and Neal Koblitz. The Improbability That an
Elliptic Curve Has Subexponential Discrete Log Problem under the
Menezes–Okamoto–Vanstone Algorithm. Journal of Cryptology,
11(2):141–145, 1998.

[BKLS02] Paulo S. L. M. Barreto, Hae Yong Kim, Ben Lynn, and Michael
Scott. Efficient Algorithms for Pairing-Based Cryptosystems. In
Moti Yung, editor, Advances in Cryptology - CRYPTO 2002, vol-
ume 2442 of Lecture Notes in Computer Science, pages 354–368.
Springer, 2002.

[BL96] Dan Boneh and Richard J. Lipton. Algorithms for Black-Box Fields
and their Application to Cryptography (Extended Abstract). In Neal
Koblitz, editor, Advances in Cryptology - CRYPTO ’96, volume 1109
of Lecture Notes in Computer Science, pages 283–297. Springer,
1996.

[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. Short Signatures from
the Weil Pairing. In E. Boyd, editor, Advances in Cryptology – ASI-
ACRYPT 2001, volume 2248 of Lecture Notes in Computer Science,
pages 514–532. Springer, 2001.

[BLS03] Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott. On the Selec-
tion of Pairing-Friendly Groups. In Mitsuru Matsui and Robert J.

46 ANR Project ECLIPSES — Restricted to ECLIPSES

Zuccherato, editors, Selected Areas in Cryptography – SAC 2003,
volume 3006 of Lecture Notes in Computer Science, pages 17–25.
Springer, 2003.

[BLS04] Dan Boneh, Ben Lynn, and Hovav Shacham. Short Signatures from
the Weil Pairing. Journal of Cryptology, 17(4):297–319, 2004.

[CH06] Jaewook Chung and M. Anwar Hasan. Asymmetric squaring formu-
lae. Technical report, University of Waterloo, 2006.

[CSB04] Sanjit Chatterjee, Palash Sarkar, and Rana Barua. Efficient Computa-
tion of Tate Pairing in Projective Coordinate over General Character-
istic Fields. In Choonsik Park and Seongtaek Chee, editors, Informa-
tion Security and Cryptology – ICISC 2004, volume 3506 of Lecture
Notes in Computer Science, pages 168–181. Springer, 2004.

[dB88] Bert den Boer. Diffie-Hillman is as Strong as Discrete Log for Certain
Primes. pages 530–539, 1988.

[FR94] Gerhard Frey and Hans-Georg Rück. A remark concerning m-
divisibility and the discrete logarithm in the divisor class group of
curves. Math. Comput., 62(206):865–874, 1994.

[FST10] David Freeman, Michael Scott, and Edlyn Teske. A taxonomy of
pairing-friendly elliptic curves. Journal of Cryptology, 23(2):224–
280, 2010.

[Gal05] Steven D. Galbraith. Pairings, chapter IX, pages 183–213. Lon-
don Mathematical Society Lecture Note Series. Cambridge Univer-
sity Press, 2005.

[GPS06] S.D. Galbraith, K.G. Paterson, and N.P. Smart. Pairings for cryp-
tographers. Cryptology ePrint Archive, Report 2006/165, 2006.
http://eprint.iacr.org/.

[GR04] Steven D. Galbraith and Victor Rotger. Easy Decision-Diffie-
Hellman Groups. LMS Journal of Computation and Mathematics,
7, 2004.

[GS10] Robert Granger and Michael Scott. Faster Squaring in the Cyclotomic
Subgroup of Sixth Degree Extensions. In Phong Q. Nguyen and
David Pointcheval, editors, Public Key Cryptography – PKC 2010,
volume 6056 of Lecture Notes in Computer Science, pages 209–223.
Springer, 2010.

[HSV06] Florian Hess, Nigel P. Smart, and Frederik Vercauteren. The
Eta Pairing Revisited. IEEE Transactions on Information Theory,
52(10):4595–4602, 2006.

[IT02] Tetsuya Izu and Tsuyoshi Takagi. Efficient Computations of the Tate
Pairingfor the Large MOV Degrees. In Pil Joong Lee and Chae Hoon
Lim, editors, Information Security and Cryptology – ICISC 2002,
volume 2587 of Lecture Notes in Computer Science, pages 283–297.
Springer, 2002.

D2.1 — Promising Algorithms for Pairing Computations 47

[Jou00] Antoine Joux. A One Round Protocol for Tripartite Diffie-Hellman.
In Wieb Bosma, editor, Algorithmic Number Theory – ANTS-IV, vol-
ume 1838 of Lecture Notes in Computer Science, pages 385–394.
Springer, 2000.

[Jou04] Antoine Joux. A One Round Protocol for Tripartite Diffie-Hellman.
Journal of Cryptology, 17(4):263–276, 2004.

[Joy95] Marc Joye. Introduction à la théorie des courbes elliptiques. Master
thesis, UCL, 1995. Available at http://joye.site88.net/
publications.html.

[KM05] Neal Koblitz and Alfred Menezes. Pairing-Based Cryptography at
High Security Levels. volume 3796 of Lecture Notes in Computer
Science, pages 13–36. Springer, 2005.

[LH00] Chae Hoon Lim and Hyo Sun Hwang. Fast Implementation of Ellip-
tic Curve Arithmetic in GF(pn). In Hideki Imai and Yuliang Zheng,
editors, Public Key Cryptography – PKC 2000, volume 1751 of Lec-
ture Notes in Computer Science, pages 405–421. Springer, 2000.

[LN97] Rudolf Lidl and Harald Niederreiter. Finite fields, volume 20 of Ency-
clopedia of Mathematics and its Applications. Cambridge University
Press, second edition, 1997.

[Men05] Alfred Menezes. An introduction to pairing-based cryptography.,
2005.

[Mil86] Victor S. Miller. Short Programs for functions on Curves. Technical
report, IBM Watson Research Center, 1986.

[Mil04] Victor S. Miller. The Weil Pairing, and Its Efficient Calculation. Jour-
nal of Cryptology, 17(4):235–261, 2004.

[MKHO07] Seiichi Matsuda, Naoki Kanayama, Florian Hess, and Eiji Okamoto.
Optimised Versions of the Ate and Twisted Ate Pairings. In Steven D.
Galbraith, editor, Cryptography and Coding, IMA International Con-
ference, volume 4887 of Lecture Notes in Computer Science, pages
302–312. Springer, 2007.

[Möl01] Bodo Möller. Algorithms for Multi-exponentiation. In S. Vaudenay
and A.M. Youssef, editors, Selected Areas in Cryptography – SAC
2001, volume 2259, pages 165–180, 2001.

[MOV91] Alfred Menezes, Tatsuaki Okamoto, and Scott A. Vanstone. Reduc-
ing Elliptic Curve Logarithms to Logarithms in a Finite Field. In
ACM Symposium on Theory of Computing – STOC ’91, pages 80–89.
ACM, 1991.

[MOV93] Alfred Menezes, Tatsuaki Okamoto, and Scott A. Vanstone. Reduc-
ing elliptic curve logarithms to logarithms in a finite field. IEEE
Transactions on Information Theory, 39(5):1639–1646, 1993.

[MvOV97] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1997.

48 ANR Project ECLIPSES — Restricted to ECLIPSES

[MW99] Ueli Maurer and Stefan Wolf. The Relationship Between Break-
ing the Diffie-Hellman Protocol and Computing Discrete Logarithms.
SIAM Journal on Computing, 28(5):1689–1721, 1999.

[Sha84] Adi Shamir. Identity-Based Cryptosystems and Signature Schemes.
In G.R. Blakley and D. Chaum, editors, Advances in Cryptology –
CRYPTO ’84, volume 196 of Lecture Notes in Computer Science,
pages 47–53. Springer, 1984.

[Sil86] J.H. Silverman. The Arithmetic of Elliptic Curves, volume 106 of
Graduate Texts in Mathematics. Springer-Verlag, 1986.

[SL02] Martijn Stam and Arjen K. Lenstra. Efficient Subgroup Exponentia-
tion in Quadratic and Sixth Degree Extensions. In Burton S. Kaliski
Jr., Çetin Kaya Koç, and Christof Paar, editors, CHES, volume 2523
of Lecture Notes in Computer Science, pages 318–332. Springer,
2002.

[Ver01] Eric R. Verheul. Evidence that XTR Is More Secure than Supersin-
gular Elliptic Curve Cryptosystems. In Birgit Pfitzmann, editor, Ad-
vances in Cryptology - EUROCRYPT 2001, volume 2045 of Lecture
Notes in Computer Science, pages 195–210. Springer, 2001.

[Ver04] Eric R. Verheul. Evidence that XTR Is More Secure than Supersingu-
lar Elliptic Curve Cryptosystems. Journal of Cryptology, 17(4):277–
296, 2004.

[Ver10] Frederik Vercauteren. Optimal Pairings. IEEE Transactions on In-
formation Theory, 56(1):455–461, 2010.

[Wik] Wikipedia. Elliptic curve. http://en.wikipedia.org/
wiki/Elliptic_curve.

[ZZH08] Chang-An Zhao, Fangguo Zhang, and Jiwu Huang. A note on the
Ate pairing. Journal Information Security, 7(6):379–382, 2008.

