
ANR Project ECLIPSES

Elliptic Curve Leakage-Immune Processing
for Secure Embedded Systems

D1.1

Review of cryptographic protocols based
on elliptic curves

Contributor(s)

Anja Becker, Sorina Ionica, Jérôme Plût – UVSQ
Karine Villegas – Gemalto

Due date of deliverable: T0+x
Actual submission date: February 20, 2012
ECLIPSES partner in Charge: Gemalto, UVSQ

Confidentiality level: Restricted to ECLIPSES Release: 1.0

History

Version Date Author Modification
1.00 27/08/10 Karine Villegas Initial revision: Maths, ECDSA, crypto-

processors
27/08/10 Anja Becker Initial ECDLP, ECDHP, ECDH key agree-

ment, ECIES
27/08/10 Sorina Ionica Maths
2010-09-03 Jérôme Plût Maths
13/09/10 Karine Villegas Montgomery Ladder, ECDSA
2010-09-20 Jérôme Plût Protocols
2010-09-30 Jérôme Plût Final

ECLIPSES Partners

Start date of project: 2010, January 21 Duration: 3 years

The information in this document is provided as is, and no warranty is
given or implied that the information is fit for any particular purpose. The
user thereof uses the information at its sole risk and liability.

ii

iii

Contents

1 Background material on elliptic curves over finite fields 3
1.1 Finite fields of prime characteristic 3
1.2 Elliptic curves over prime fields 6
1.3 Binary fields and elliptic curves 10
1.4 Point multiplication techniques 12
1.5 Elliptic curve discrete logarithm problem 15
1.6 Elliptic curve Diffie-Hellman problem 19
1.7 Domain parameters . 19
1.8 Group order computation . 21
1.9 Standardized curves . 22

2 Cryptographic protocols based on elliptic curves 23
2.1 Digital signature . 24

2.1.1 Schnorr’s protocol . 24
2.1.2 ECDSA: Elliptic curve digital signature algorithm . . 24
2.1.3 ECGDSA: “German” ECDSA 25
2.1.4 ECKCDSA: “Korean certificate” DSA 25

2.2 Key agreement protocols . 26
2.2.1 ECDH: Elliptic curve Diffie-Hellman 26
2.2.2 ECSTS . 27
2.2.3 ECMQV . 28
2.2.4 ECHMQV: Hashed MQV 28
2.2.5 ECKMQV: Korean MQV 29
2.2.6 FHMQV: Fully Hashed MQV 29

2.3 Key /data encapsulation . 29
2.3.1 Elliptic curve integrated encryption system (ECIES-

KEM) . 29
2.3.2 PSEC-KEM . 30

3 Crypto-processor functionalities state-of-the-art 30
3.1 Operations needed . 31
3.2 Co-processors and operations needed 32
3.3 Characteristics and functionalities 32
3.4 Operand constraints . 32
3.5 Modular multiplication . 33
3.6 Other functionalities . 33

iv

D1.1 — Review of cryptographic protocols based on elliptic curves 1

List of algorithms

1 Background material on elliptic curves over finite fields 3
1.1.4 Barrett reduction algorithm 5
1.1.8 Montgomery step . 6
1.4.1 Double-and-add algorithm 12
1.4.3 Sliding window algorithm 13
1.4.5 Yao’s algorithm . 13
1.4.6 Montgomery ladder . 14
1.7.2 Validation of the domain parameters (E, n, G) 20

2 Cryptographic protocols based on elliptic curves 23
2.0.2 Key pair generation . 24
2.1.1 Schnorr signature generation 24
2.1.2 Schnorr signature verification 24
2.1.3 ECDSA signature generation 25
2.1.4 ECDSA signature verification 25
2.1.5 ECGDSA signature generation 26
2.1.6 ECGDSA signature verification 26
2.1.7 ECKCDSA signature generation 26
2.1.8 ECKCDSA signature verification 26
2.2.1 ECDH key agreement . 27
2.2.2 ECSTS key agreement . 27
2.2.3 ECMQV key agreement . 28
2.2.4 ECKMQV key agreement 29
2.3.1 ECIES-KEM encapsulation 30
2.3.2 ECIES-KEM decapsulation 30

3 Crypto-processor functionalities state-of-the-art 30
2.3.3 PSEC-KEM encapsulation 31
2.3.4 PSEC-KEM decapsulation 31

2 ANR Project ECLIPSES — Restricted to ECLIPSES

List of tables

1 Background material on elliptic curves over finite fields 3
1.2.11 Elliptic curve operation costs in various coordinates 10
1.7.1 Elliptic curve domain parameters 20

2 Cryptographic protocols based on elliptic curves 23
2.0.1 Levels of security . 23

3 Crypto-processor functionalities state-of-the-art 30

List of figures

1 Background material on elliptic curves over finite fields 3
1.1.2 Algorithms used by gmp . 4
1.2.3 Elliptic curve addition law, real numbers 8
1.2.4 Elliptic curve addition law, F37 8
1.5.4 Record sizes (bits) for DLP in finite fields 17

2 Cryptographic protocols based on elliptic curves 23

3 Crypto-processor functionalities state-of-the-art 30
3.1.1 Required services and functions 31

D1.1 — Review of cryptographic protocols based on elliptic curves 3

Introduction

The purpose of this document is to review cryptographic protocols based
on elliptic curves. The first chapter addresses the mathematical back-
ground, finite fields and elliptic curves, and describes some methods and
algorithms for manipulating them. Furthermore, we present the computa-
tional problems on which security is based, as well as known attacks and
security recommendations for the choice of parameters.
The second chapter presents protocols for digital signature, key exchange,
and encryption, using the arithmetic of elliptic curves, and the theoretical
security of those protocols is evaluated against the mathematical problems.

1 Background material on elliptic curves over finite
fields

1.1 Finite fields of prime characteristic

Finite field arithmetic Let p be a prime number. We will write k = Fp
for the finite field of integers modulo p. Most operations involving elliptic
curves will be performed in this finite field, so we need the implementation
of the arithmetic of Fp to be as fast as possible.
Let B be the size of the machine word; for example, B = 232 on a 32-bit CPU.
Since p will be greater than B, we will generally represent elements of Fp
as polynomials in B:

x =
n−1

∑
i=0

Bixi, (1.1.1)

where n = blogB pc. Such numbers are always non-negative, and all mod-
ular arithmetic can therefore be assumed to be unsigned.
The cost of most computations will be expressed in terms of arithmetic op-
erations in Fp. These operations are, in increasing order of cost:
– additions, negations and subtractions are comparatively cheap and will

usually be neglected;
– Ca is the cost of a short multiplication (multiplication by an integer a 6

B− 1);
– S is the cost of a field squaring;
– M is the cost of a field multiplication;
– I is the cost of a field inversion.

Integer multiplication Most algorithms will avoid using field inversions
through a suitable choice of coordinates; the determining factor will there-
fore be the speed of modular multiplications.
The most direct way to perform a modular multiplication c = ab (mod p)
is by first computing the integer product ab, then reducing modulo p. Both
operations may be done using various algorithms.

4 ANR Project ECLIPSES — Restricted to ECLIPSES

Integer multiplication has been implemented and optimized for example
in the gmp library: see figure 1.1.2. For balanced operands of sizes 6 512
bits, schoolbook and Karatsuba (= toom22) are likely to be the two most
useful methods.

Figure 1.1.2 Algorithms used by gmp for integer multiplication, depending
on operand size (log scale, 32n bits, 12 < n < 5617).

(source: gmplib.org/devel, CPU: Pentium 4)

Particular moduli Reduction modulo p can be made cheaper if the mod-
ulus p is a pseudo-Mersenne prime [Sol99], i.e. has a very sparse binary rep-
resentation. Examples are given in the NIST recommendations [FIP00] or
by the SEC group [SEC00], such as

p256 = 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1, p521 = 2521 − 1. (1.1.3)

It is possible to derive ad-hoc formulas for reduction modulo such a p that
are much faster than full Euclidean division; see for instance [BHLM01],
[NSA08].

Barrett and Quisquater reduction algorithms Barrett’s modular reduc-
tion algorithm uses the fact that the number to be reduced, x = ab, is known
to be not greater than p2. Instead of performing a full Euclidean division, it
uses an estimate q̂ of the quotient q = x/p to compute the remainder.
Barrett’s algorithm uses the formula

q =

⌊
x
p

⌋
=

⌊
(x/Bn−1)(B2n/p)

Bn+1

⌋
≈
⌊⌊

x/Bn−1⌋R
Bn+1

⌋
,

D1.1 — Review of cryptographic protocols based on elliptic curves 5

Algorithm 1.1.4 Barrett reduction algorithm
This algorithm computes r = x (mod p).

1. precompute R =
⌊

B2n

p

⌋
2. q̂ =

⌊
bx/Bn−1cR

Bn+1

⌋
3. r =

(
x mod Bn+1)− (pq̂ mod Bn+1)

4. if r < 0 then r = r + Bn+1 end if
5. while r > p do r = r− p end while
6. return r

where R =
⌊

B2n/p
⌋
.

Since the estimate q̂ ∈ {q− 2, q− 1, q}, the while loop in step 5 is executed
at most twice, and with more than 90% probability is not executed at all;
see [BGV94], [CFA06, §10.4.1] for a more detailed explanation.

Quisquater’s algorithm [Qui90], [CFA06, §10.33] replaces division by p by
division by a multiple p′ of p. We define p′ as being the smallest multiple
of p such that p′ = cp > Bn+1; we therefore can write, in base B:

p′ = 1 · Bn+1 + 0 · Bn + . . . (1.1.5)

Therefore, schoolbook division by p′ becomes easy: if we write x =
xm−1Bm−1 + · · ·+ x0, the leading B-ary digit of bx/p′c is always xm−1. We
thus avoid all short divisions during the computation of the Euclidean
division x = p′q′ + r′. There only remains to compute r = r′ (mod p),
where r′ < p′.

Montgomery multiplication This algorithm [Mon85] allows modular
multiplications to be performed efficiently for large moduli p, at the cost
of some precomputations.
We represent a number a (mod p) by the value a = R · a (mod p) for some
constant R ∈ F?

p; R is chosen coprime to p, so that a 7−→ a is bijective. We
immediately note that this operation is linear, which means that a + b = a+
b, and therefore Montgomery representations can be added and subtracted
in the straightforward way. As far as multiplications go, we can compute

ab = a · b/R (mod p) =: step(a, b) (1.1.6)

where the step operation is defined by step(x, y) = x · y/R (mod p).
Now set in particular R = Bn. Then if we write a = an−1Bn−1 + · · ·+ a0, we
may compute ab/Bn as (an−1b/B) + · · ·+ (a0b/Bn) as a polynomial in 1/B,
using Horner’s rule:

ab
Bn =

(
. . .
((

a0b · 1
B
+ a1b

)
· 1

B
+ a2b

)
. . .
)
· 1

B
(mod p). (1.1.7)

6 ANR Project ECLIPSES — Restricted to ECLIPSES

This requires performing a division by B at each step of the evaluation.
Since B is a power of two, exact division by B in Z is cheap to perform
via a right-shift. What we need is the divison x/B (mod p); this can be
done by replacing x by x′ = x + mp so that x′ is a multiple of B and then
right-shifting.
The Montgomery step algorithm can now be fully developed [CFA06,
§11.3]:

Algorithm 1.1.8 Montgomery step
This algorithm computes c = ab/B (mod p).

1. precompute p′ such that pp′ + BB′ = 1.
2. c← 0
3. for i = 0 to n− 1 do
4. m← ((c0 + b0ai)p′ (mod B))
5. c← (c + aib + mp) · 1

B (right-shift)
6. end for
7. if c > p then c← c− p end if
8. return c

Finally, it remains to see that the Montgomery reduction a 7−→ a can be
written as

a = R · a =
R2 · a

R
= step(R2, a) (mod p), (1.1.9)

where R2 (mod p) will of course be precomputed; and the Montgomery lift
a 7−→ a can be written as

a = a · R−1 =
1 · a

R
= step(1, a) (mod p). (1.1.10)

A Montgomery modular inversion algorithm is given in [CFA06, §11.12].

Performing a single modular multiplication bears the cost of these con-
version operations as an overhead to the Montgomery step. Therefore,
Montgomery representation is mostly useful when performing long chains
of multiplications and squaring, like in modular exponentiation. More-
over, the Montgomery step algorithm has asymptotical complexity O(n2)
in short multiplications, which is the same order as schoolbook multiplica-
tion, so it is not suitable for large values of n.

1.2 Elliptic curves over prime fields

An elliptic curve E over the field k = Fp is a (projective) curve that may be
defined by a (short) Weierstraßequation:

y2 = x3 + ax + b, (1.2.1)

where the parameters a, b∈Fp are such that the discriminant ∆ = 4a3 + 27b2

is not equal to zero in Fp.

D1.1 — Review of cryptographic protocols based on elliptic curves 7

The points of E over k are the points (x, y)∈F2
p satisfying the curve equation,

to which we add a point at infinity, written O, and which may be thought
as the point at infinity in the vertical direction. We write E(k) for the set of
those points.
The cardinality of E(k) satisfies the Hasse-Weil bound:

p− 2
√

p + 1 6 #E(q) 6 p + 2
√

p + 1. (1.2.2)

In practice, this cardinality is of the same bit size as p. As a conse-
quence of this, a point of an elliptic curves occupies a long-term storage
size equal to dlog2 pe + 1: namely, it is enough to store the x-coordinate
and the sign of the y-coordinate; the y-coordinate may then be extracted
as y = ±

√
y3 + ax + b. Point compression is even easier when p ≡ −1

(mod 4), since in this case taking a square root in Fp is comparatively easy.
However, for computational purposes, both coordinates should be used,
and redundancy may even be introduced as described below.

Points of a curve may be represented in various coordinate systems, the
choice of which will change the cost of the various curve operations we
will later want to perform:
– affine coordinates: (x, y) represent the point (x, y) on the curve;
– projective coordinates: (X : Y : Z) with Z 6= 0 represent the

point (x/z, y/z) on the curve, and (0 : 1 : 0) represent O;
– Jacobian coordinates: (X : Y : Z) with Z 6= 0 represent the

point (X/Z2,Y/Z3), and (0 : 1 : 0) represent O.

Group law The points of E are endowed with a commutative group law
by the chord-and-tangent rule, which is defined as follows:
– we define O as the zero element of the curve;
– for any three distinct points A, B, C, we have A+ B+C = 0 iff A, B and C

are aligned (chord rule);
– for any two distinct points A and C, we have 2A + C = 0 iff the line AC

is tangent to E at A (tangent rule).
The tangent rule may be seen as the limit case of the chord rule when B = A.
The opposite of a point (x, y) is the point (x,−y). Formulas for adding and
duplicating points may be derived from these rules. In the following para-
graphs, an addition means computing the point P3 = P1 + P2 and a doubling
means computing P3 = 2P1.

Affine coordinates These formulas all need to compute the slope λ of the
line through P1 and P2.

Addition

λ =
y2 − y1

x2 − x1
, x3 = λ2 − x1 − x2, y3 = λ(x1 − x3)− y1. (1.2.5)

8 ANR Project ECLIPSES — Restricted to ECLIPSES

Figure 1.2.3 Elliptic curve addition law over the real numbers for the elliptic
curve y2 = x(x + 9)(x + 25); P1 + P2 = P3.

P1

P2

-P3

P3

Figure 1.2.4 Same addition over F37

P1

Doubling

λ =
3x2

1 + a
2y1

, x3 = λ2 − 2x1, y3 = λ(x1 − x3)− y1. (1.2.6)

All these formulas need a (costly) field inversion, which can be avoided
by using projective coordinates. It should also be noted that the addition
formula yields a division by zero in the following cases:
– when P1 = P2: a doubling should be used instead of an addition;
– when P1 = −P2: the sum is the zero point O.

Projective coordinates

D1.1 — Review of cryptographic protocols based on elliptic curves 9

Addition

A = Y2Z1 −Y1Z2, B = X2Z1 − X1Z2, C = A2Z1Z2 − B3 − 2B2Z1Z2,

X3 = BC, Y3 = A(B2X1Z2 − C)− B3Y1Z2, Z3 = B3Z1Z2. (1.2.7)

It should be noted that, if Z2 = 1, the cost drops by one multiplication.
This is called a mixed multiplication and will enable to save some time when
performing a point multiplication.
Moreover, these formulas yield (0 : 0 : 0) when used for doublings. The
following doubling formulas should be used instead.

Doubling

A = aZ2
1 + 3X2

1 , B = Y1Z1, C = X1Y1B, D = A2 − 8C,

X3 = 2BD, Y3 = A(4C− D)− 8B2Y2
1 , Z3 = 8B3. (1.2.8)

Jacobian coordinates

Addition

A = X1Z2
2 , B = X2Z2

1 , C = X2Z3
1 , D =Y2Z3

1 , E = B− A, F = D−C,

X3 = −E3 − 2AE2 + F2, Y3 = −CE3 + F(AE2 − X3), Z3 = Z1Z2E.
(1.2.9)

When a mixed addition is performed, five multiplications are saved and
the final cost is 7M + 4S.
These formulas yield (0 : 0 : 0) when used to compute a doubling. The
following doubling formulas should be used instead.

Doubling
A = 4X1Y2

1 , B = 3X2
1 + aZ4

1 ,

X3 = −2A + B2, Y3 = −8Y4
1 + B(A−Y3), Z3 = 2Y1Z1. (1.2.10)

If a = −3 then we can compute B as B = 3(X1 − Z2
1)(X1 + Z2

1), which is
more efficient. Moreover, almost all elliptic curves are isogenous to such
a curve [BJ03], and thus curves with a = −3 are sufficiently general and
not cryptographically weak. For this reason, NIST-recommended elliptic
curves all have a = −3.

10 ANR Project ECLIPSES — Restricted to ECLIPSES

Edwards curves An Edwards curve is, in its most general form, a quartic
curve with equation x2 + ay2 = (xy)2 + b (“inverted twisted Edwards co-
ordinates” according to [BBJ+08], [BL10]). To save time in computations,
the product xy is kept as a coordinate z, and therefore Edwards coordi-
nates (X : Y : Z : T) with XY = ZT represent the point (X/T,Y/T).
An elliptic curve may be transformed to an Edwards curve if, and only
if, the group E(k) contains Z/4Z as a subgroup. This is a condition that
is discouraged by cryptographic problems (see 1.5). Among the standard
curves, none of the NIST curves on prime fields, and only two of the SEC2
curves (secp112r2 and secp128r2) satisfy this condition.

Remarks on side-channel The affine, projective and Jacobian coordinate
systems share the property that it is impossible to perform point doublings
using the same formulas as point addition. For example, when perform-
ing point multiplication m · P using the double-and-add algorithm, sim-
ple power analysis leads to direct observation of the bits of the number m,
which may be a secret key.
Other coordinate systems, such as Edwards curves or Jacobi curves [LS01]
have a unified addition law, which means that the same formulae may
be used for adding and doubling. This adds an extra layer of protection
against side-channel attacks.

Tripling-oriented Doche-Icart-Kohel presented a curve shape that makes
comparatively fast triplings. Its main use is in double-base point multipli-
cation.

Coordinates Condition Addition Doubling

Affine I + 2M + S I + 2M + 2S
Projective 12M + 2S 7M + 5S
Jacobian 12M + 4S 4M + 6S
Jacobian a = −3 12M + 4S 4M + 4S
Edwards Z/4Z 9M + 1S + Ca + Cb 3M + 4S + Ca + Cb

Table 1.2.11: Elliptic curve operation costs in various coordinates

Summary A more comprehensive table of formulas for point addition etc.
can be found online at [BL10].

1.3 Binary fields and elliptic curves

Binary fields A binary field is a finite field whose cardinality is a power of
two. All fields with the same cardinality are isomorphic, and the field k =

D1.1 — Review of cryptographic protocols based on elliptic curves 11

F2e may be represented as the quotient field of the polynomial ring F2[X]
by an irreducible polynomial π(X) of degree e. Thus, elements of k may be
represented as

a =
e−1

∑
i=0

aiXi (mod π(X)). (1.3.1)

Field addition is then simply a bitwise addition (XOR), and field multipli-
cation is a polynomial multiplication followed by a polynomial Euclidean
division. The Frobenius endomorphism ϕ of k is defined by ϕ(a) = a2; in
particular, we have (a + b)2 = a2 + b2. Therefore, squaring is significantly
simpler to implement than multiplication.
It should be noted that, because of Weil descent attacks (see 1.5), the exten-
sion degree e should be prime.
As the choice of the polynomial π (as long as it is irreducible) does not
impact on the field F2e , it is preferable to choose a sparse polynomial as this
makes Euclidean division faster. For every degree e 6 1000, table [IEE00,
§A.8] provides an irreducible polynomial of degree three or five over F2.

Normal bases A normal basis for the field k is a basis of k as a vector space
over F2 of the form

{
θ, ϕ(θ), . . . , ϕe−1(θ)

}
. Since ϕ(x) = x2, such a basis is

ideally suited for squaring, which can then be implemented as a circular
shift. However, multiplication is more cumbersome and depends on the
matrix M of the multiplication by θ; multiplication by conjugates of θ can
then be performed by shifting the lines and columns of M accordingly.
A optimal normal basis is a normal basis where the matrix M has the mini-
mal number 2e − 1 of non-zero entries [GL92]. Such a basis does not ex-
ist for each possible size e; there are only 18 possible prime values e ∈
J50,500K [CFA06, §11.2.1.c].
The NIST standard [FIP00] defines five binary fields F2163 , F2233 , F2283 , F2409

and F2571 by giving for each of them a generating polynomial and a normal
basis.

Elliptic curves An ordinary elliptic curve over k may be represented by
the equation

E : y2 + xy = x3 + ax2 + b. (1.3.2)

The opposite of the point (x, y) is the point (x, x + y).

Affine coordinates These formulas all need to compute the slope λ of the
line through P1 and P2.

Addition

λ =
y2 + y1

x2 + x1
, x3 = λ2 + x1 + x2 + a, y3 = λ(x1 + x3) + x3 + y1. (1.3.3)

12 ANR Project ECLIPSES — Restricted to ECLIPSES

Doubling

λ = x1 +
x1

y1
, x3 = λ2 + λ + a, y3 = λ(x1 + x3) + x3 + y1. (1.3.4)

Projective coordinates See [CFA06].

1.4 Point multiplication techniques

Most cryptographic protocols based on elliptic curves make use of scalar
multiplication, which is the multiplication of a point of the curve by an inte-
ger by means of successive additions and doublings.
In the following algorithms, we will use A and D for the respective costs of
a point addition and a point doubling on E. Let P be a point of E and m be
an integer of n bits.

Fast exponentiation algorithm This is the basic “double and add” algo-
rithm (i.e., the additively written square-and-multiply algorithm).

Algorithm 1.4.1 Double-and-add algorithm
1. R←O;
2. while m > 0 do
3. if m is odd then
4. R← R + P
5. end if
6. P← 2P
7. m← m/2
8. end while

The average cost for this method is of 1
2 nA + nD. It should be noted than

when working in projective or Jacobian coordinates and an affine point P,
we may replace all point additions in step 4 by mixed additions; in some
cases, it may be actually faster to first convert a projective point P to affine
coordinates (at the cost of one inversion and two multiplications) and then
to use these to compute mP.

NAF and Windowed representations Some improvement can be
achieved by using a sliding window representation for the integer m. Let w> 1
be an integer; then each integer m has a unique sliding window represen-
tation of size w

m =
n

∑
i=0

mi2i, (1.4.2)

such that |mi|< 2w−1, each mi is zero or odd, and among each window of w
successive mi, at most one is not zero.

D1.1 — Review of cryptographic protocols based on elliptic curves 13

Let m be given in this form. Then a fast scalar multiplication mP may
be computed at the cost of precomputing odd multiples of P from 3P
to (2w−1 − 1)P:

Algorithm 1.4.3 Sliding window algorithm
1. R←O
2. for i = 0 . . . n do
3. if ti 6= 0 then
4. R← R + miP
5. end if
6. R← 2R
7. end for

This uses on average 1
w+1 (n + 1)A + (n + 1)D, at the cost of some precom-

putation which depends only on P. This technique is therefore particularly
useful when the point P is fixed.

Yao’s algorithm Yao’s algorithm is a transposed version of the sliding win-
dow algorithm. Starting from the representation 1.4.2, we group all those
indices i which have the same digit mi = r and write m(r) for their sum, so
that

m =
n

∑
i=0

mi2i =
2w−1

∑
r=0

rm(r). (1.4.4)

We can then compute all m(r) · P by successive doublings, and then m · P by
the formula m · P = ∑ rm(r) · P.

Algorithm 1.4.5 Yao’s algorithm

1. m(r)← 0, Pr←O for r = 0, . . . , 2w − 1; Q← 0
2. for i = 0, . . . , n− 1 do
3. Pmi ← Pmi + Q
4. Q← 2Q
5. end for
6. R←O, Q←O
7. for j = 2w − 1, . . . , 1 do
8. Q← Q + Pmi

9. R← R + Q
10. end for
11. return R

Although the complexity is the same as that of the sliding window method,
this algorithm requires more storage space.

Montgomery ladder The usual trick for removing the conditional branch-
ing in the double-and-add algorithm that could be unsecure regarding

14 ANR Project ECLIPSES — Restricted to ECLIPSES

physical attacks consists in performing a dummy point addition when mul-
tiplier bit mj is zero. As a result, each iteration appears as a point doubling
followed by a point addition A popular point multiplication algorithm was
developed by Montgomery as a means for speeding up the ECM factoring
method on a special form of elliptic curves.

Algorithm 1.4.6 Montgomery ladder
1. R0← P;
2. R1← 2P;
3. for i = n− 2 . . . 0 do
4. b← 1−mi
5. Rb← R0 + R1
6. Rmi ← 2Rmi

7. end for
8. return R0

This algorithm behaves regularly but seems, at first glance, as costly as
the double-and-add-always algorithm. However, it does not need to han-
dle the y-coordinates: the sum of two points whose difference is a known
point can be computed without the y-coordinates [Mon87]. Note, that the
difference R1 − R0 remains invariant throughout the algorithm (and hence
is equal to P). Further, the y-coordinate of a point R0 can be recovered
from a point P, the x-coordinate of R0, and the x-coordinate R0 + P. The y-
coordinate of R = [m]P can thus also be recovered when only x-coordinates
are used in the Montgomery point multiplication algorithm.

Using addition chains Some methods for computing multiples in the
group of points of E arise from the attempt to minimise the number of
group operations (additions and doublings) necessary to compute m · P.
An addition chain for an integer m is a sequence of integers (a1 = 1, . . . , ar =
m) such that each ai is the sum of two previously occurring ai′ and ai′′ ; min-
imizing such a chain naturally leads to faster computations for multiples.
For example, double-and-add and NAF methods may be thought of as par-
ticular addition chains.
While this is true for all groups, some remarks apply to the particular case
of elliptic curves.
– Negating a point is free, and therefore a subtraction costs the same as an

addition; consequently, we may allow subtractions in our chains.
– In most useful coordinates systems, doubling a point is significantly

cheaper than adding two separate points; therefore the appropriate mea-
sure of complexity of a chain must weigh doublings accordingly.

– While we may write down formulas for point tripling for all coordinate
systems, some shapes are especially suited to tripling and have a com-
paratively fast tripling operation. Therefore, we may also allow tripling
in operation chains, provided that we still use a good weighting.

D1.1 — Review of cryptographic protocols based on elliptic curves 15

Also note that, particularly in the case of a fixed base point, some precom-
putation may be useful to speed these methods.
The interest of this is that the length of the shortest addition chain for a
given m is sub-linear. Although finding this shortest chain is a hard prob-
lem, finding one short chain is generally enough.
An example of such a chain is given by a decomposition of the integer m in
double-base {a, b}:

m =
r

∑
i=0
±miaαi bβi , (1.4.7)

where αi and βi are integers. In practical uses, we will always take {a, b}=
{2,3}. This representation is redundant: in general, m has several such
representations.
A suitable {2,3}-representation of m may be found by a greedy algo-
rithm [DIM08], starting by the biggest value 2α3β 6 m. This yields a sub-
linear algorithm for addition in O(logm

loglogm) curve operations. However, the
first part of this algorithm relies on finding the best approximation by de-
fault of logm by α log2 + β log3, and thus on floating-point arithmetic in-
cluding computation of logarithms.
Further study [BBLP07] has found this method to be somewhat faster than
sliding-window methods for tripling-oriented curves, but not significantly
better for doubling-oriented Edwards or Jacobi quartic curves in crypto-
graphic sizes.

1.5 Elliptic curve discrete logarithm problem

Let Γ be a cyclic group of order N and g be a generator of Γ. For any
integer m, computing a = gm can be done in O(log N) operations in Γ. The
inverse problem, given g and a, finding m such that a = gm, is known as
the discrete logarithm problem in the group Γ. The integer m is known as the
discrete logarithm of a and may be written m = logg a.
Two particular instances of this problem are used in cryptography:
– when Γ = F×p is the multiplicative group of a finite field; Diffie-Hellman,

DSA, and ElGamal are based on this scheme.
– when Γ = E(k) is the group of points of an elliptic curve E, which is the

only case in which we are interested.
The abstract DLP requires a worst-case average O(

√
N) to solve for a

generic group Γ (Shoup, 1997), although ad-hoc faster techniques may ex-
ist for particular groups Γ. The naïve algorithm of brute-force attack has an
exponential complexity of O(N) operations in Γ.
Moreover, if N factors in prime powers pe1

1 . . . per
r , then the Pohlig-Hellman

attack reduces the DLP in Γ to that in groups of order p1, . . . , pr; therefore,
we will want to work in groups of prime, or almost prime (i.e. of the form h ·
p with h small and p prime), order. The integer h is called the cofactor and
needs to be extremely small.

16 ANR Project ECLIPSES — Restricted to ECLIPSES

For example, elliptic curves representable as Edwards curves have a sub-
group isomorphic to Z/4Z, and thus a cofactor h > 4. Therefore, instead of
working in E(k), we will work in a subgroup of index 4 and thus lose two
bits of group size, which amounts to one bit of security as shown below.

Baby-step, giant step This is a generic time vs. space tradeoff technique
for attacking the DLP. Let r < N, for example r =

⌈√
N
⌉

. Then any num-
ber m < N may be written as m = m1r + m0 with m0 < r and m1 < N/r. If,
for such an m, we have a = gm, then

a(g−r)m1 = gm0 . (1.5.1)

We may therefore store values of gi for i = 0, . . . , r − 1 in a hash table and
search the list of a(g−r)j for j = 0, . . . , N/r for such a value.
When choosing r =

√
N, the complexity will be O(

√
N) with storage space

requirement O(
√

N).

Pollard’s rho method This technique also works with any group Γ. If
we can find four numbers u, v, u′, v′ such that guav = gu′av′ , then we can
compute

logg a =
u− u′

v− v′
(mod N). (1.5.2)

We equip the group Γ with a pseudorandom function f : Γ −→ Γ such that
the iterated sequence xi = f i(x0) is easy to write as xi = gui avi . This se-
quence will eventually loop and, since f is pseudorandom, we expect the
final cycle of the sequence (xi)i60 to be of length O(

√
N). When we find a

collision in the sequence, we may deduce m using the formula 1.5.2.
To find the cycle, it is not necessary to store all computed values xi. We
may instead compute simultaneously both sequences (xi) and (x2i) and
stop when we find i such that xi = x2i.
This method requires polynomial storage space and is easy to implement in
parallel by starting several sequences x(j)

i with various starting points x(j)
0 ;

over r processors, an average speedup of
√

s is expected.

Index calculus Index calculus [EG02] may be used to attack in subexpo-
nential time the DLP in groups Γ endowed with the following data:
– a covering monoid M such that Γ is a quotient group of M;
– a set of primes, P, in M;
– a size function M −→ [0,+∞[.
For any real number t, we define an element x in Γ as being t-smooth if it
has a representative in M that may be written as the product of primes of
size 6 t. We assume that:
– t-smoothness can be tested for in polynomial time;
– the prime decomposition of a t-smooth element can be computed in poly-

nomial time.

D1.1 — Review of cryptographic protocols based on elliptic curves 17

We then choose a t > 0 and construct the set Pt = {p1, . . . ,pn} of all primes
of size 6 t. To compute logg a in Γ, we then select randomly numbers αj

and β j such that gαj aβ j is t-smooth, and compute its prime decomposition:

gαj aβ j = p
a1j
1 . . .p

anj
n .

Taking logarithms in base g, we thus obtain a linear relation between the
unity, logg a and the logg pj. We then iterate this process until we find
enough relations to compute logg a.
Specific applications for index calculus include the following.

1. Prime fields. We take M = N, P is the set of prime numbers, and the
size function is log(x).
Sieving can be improved by the use of the number field sieve algo-
rithm [Gor93], which is currently the fastest known algorithm for at-
tacking the DLP in finite fields.
Let K be a number field in which p splits, i.e. there exists a surjective
ring morphism θ :OK −→ Fp. Then, in view of the index calculus set-
ting, we may choose as our monoid M the group of fractional ideals
of K. The size function maps an ideal a to its norm in Z.
Let x ∈ OK be an antecedent of a for θ; then we may sieve algebraic
numbers of the form u + vx to find linear relations.
The asymptotic complexity of this method [Cop93] is Lp(

1
3 , c) for

some constant c 6 1.9018, where

Lx(α, c) = exp
(

c · (log x)α · (loglog x)1−α
)

. (1.5.3)

Various records for DLP solving have been obtained through the NFS
and its sister algorithm, the function field sieve, for fields of small
characteristic.

Figure 1.5.4 Record sizes (bits) for DLP in finite fields

 0

 100

 200

 300

 400

 500

 600

 700

1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

Prime
Binary

Ternary

2. Hyperelliptic curves. We take M = the group of zero-degree divi-
sors on an hyperelliptic curve C of order g, P the set of all P − [O]
where P is prime, and the size function is given by the degree of the

18 ANR Project ECLIPSES — Restricted to ECLIPSES

x-part polynomial. It is thus possible to solve DLP in Γ = Jac(C)(Fq)
in O(q2+ε); since Γ is of order ∼ qg, this is an improvement over the
square-root methods whenever g is large enough. A variant of this
attack [Thé03] is better than the square-root method for g > 3. Thus,
the only hyperelliptic curves useful for cryptographic purposes are
those of genus g = 2.

In particular, this method is not directly available for attacking ECDLP:
namely, all elements of the group of divisors are representable by points
of E and prime.

Reduction techniques for the discrete logarithm in elliptic curves

Anomalous elliptic curves The curve E is said to be anomalous if
∣∣E(Fp)

∣∣= p.
In this case, (Smart; Akari-Satoh; Semaev) showed in 1997 that there exists
a group isomorphism E(Fp)−→ Fp that is computable in polynomial time.
Since the DLP in Fp amounts to a single field division, this means that the
DLP in anomalous curves is solvable in polynomial time.

Weil descent and GHS reduction Let E be an elliptic curve over k = Fpn

where n 6 2 is a composite number. Then its Weil scalar reduction to a
subfield of k is a higher-dimensional abelian variety A; under some condi-
tions [GHS02, Die03] the map E −→ A does not collapse the useful prime
subgroup of E(k) in A, and A is an hyperelliptic curve in which index cal-
culus techniques are faster than Pollard rho method in E(k), and the

Weil pairing and MOV reduction Let E be an elliptic curve over k and G be
a point of E generating a group of order `. We may assume that ` is a prime
number distinct from p.
We write E[`] for the subgroup of points of `-torsion of E over the algebraic
closure of k; one may define the Weil pairing

e` : E[`]× E[`] −→ µ`(Fp), (1.5.5)

where µl(Fp) is the group of `-roots of unity. Since this pairing is non-
degenerate, this allows us to transport the DLP in E[`] to the DLP in k′ =
k(µ`), where k′ is the `-th cyclotomic field extension of k.
More precisely, if k = Fq, we will have k′ = Fqe , where e is the smallest
integer such that ` divides qe − 1 ; or, in other words, qe ≡ 1 (mod `).

In order to protect from this attack, we need to ensure that discrete loga-
rithms in k′ will be at least as hard as discrete logarithms in E. We there-
fore compute B such that DLP in FqB is as hard as DLP in E, and check
that qe 6≡ 1 (mod `) for e = 1, . . . , B. The IEEE standard P1363 provides a
table of suitable values of B [IEE00, §A.12.1]. We see that B = 10 is enough
for 192-bit curves, B = 20 for 384-bit curves, and B = 30 for 512-bit curves.

D1.1 — Review of cryptographic protocols based on elliptic curves 19

Summary An elliptic curve E, with order r, over Fp is suitable for ECDLP-
based cryptography if it meets the following criteria:

1. r is almost prime, i.e. there exist ` prime and h small (h ≤ 4) such
that r = h`;

2. E is not anomalous, i.e r 6= p;

3. E satisfies the MOV condition: pe 6≡ 1 (mod `) for e = 1, . . . , B.

Provided those criteria are satisfied, the best method known for attacking
this particular instance of the discrete logarithm problem is Pollard’s rho
method. The record size of 112 bits for a prime field was obtained through
this method in July 2009 [BKM09].
For a more complete historical perspective on ECDLP we refer to [Men08].

1.6 Elliptic curve Diffie-Hellman problem

The computational Diffie-Hellman problem (ECCDHP) on an elliptic curve E
is: given three points P, aP and bP, compute abP.
This problem is obviously weaker than the ECDLP on the same elliptic
curve, since taking logarithms directly leads to a solution of the problem.
However, in most cases the two problems are actually equivalent [MW00],
and thus the ECCDHP is widely accepted as about as strong as the ECDLP.
There exist some variants of this problem:
– the decisional Diffie-Hellman problem (ECDDH) is, given P, aP, bP and Q,

deciding whether or not Q = abP;
– the gap Diffie-Hellman problem is to solve the computational Diffie-

Hellman problem, assuming access to an oracle who can solve the de-
cisional Diffie-Hellman problem.

A list of related problems is maintained on http://www.ecrypt.eu.

org/wiki/index.php/Discrete_Logarithms. The best currently known
method for attacking most of them (including the three variants above) is
to solve the DLP.

1.7 Domain parameters

The domain parameters for an elliptic curve scheme describe an elliptic
curve E defined over a finite field Fp, a base point G ∈ E(Fp), and its order
n. They may be distributed in a public key certificate and are:

Generating a suitable elliptic curve There are several methods for gen-
erating an appropriate elliptic curve, in decreasing order of generality of
the resulting curve [KMV00].

1. Random curves. We pick randomly a, b∈Fp such that ∆ = 4a3 + 27b2 6=
0; we then compute the order r of the curve E : y2 = x3 + ax + b and
check that it satisfies all our criteria.

20 ANR Project ECLIPSES — Restricted to ECLIPSES

p Number of elements in Fp
S Optional random number seed
a, b Parameters for the curve E : y2 = x3 + ax + b
G Base point on the curve E
n Order of G in the group of points of E
h Cofactor, i.e.

∣∣E(Fp)
∣∣/n

Table 1.7.1: Elliptic curve domain parameters

This method produces the most general curves, with the added bonus
that it is easy to check that the curve was randomly produced (by
outputting the seed).

2. Complex multiplication. This method is detailed in 1.8. As we compute
the group order before doing any computations on the curve itself,
it is much faster and easier to implement than any method based on
point counting. However, the curves obtained are not fully generic:
namely, their endomorphism ring has a small class group, although
no known attack is based on this fact.

3. Koblitz curves. We start with a known curve E over Fp with p small,
and then use the curve E over some extension Fpe of Fp. While the
group order of E(Fpe) is easy to compute, curves produced with this
method are extremely particular.

4. Use a published curve. Since in most protocols the curve itself is not a
part of the secret key, we can finally use a published curve for which
no attack is known. These curves obviously meet all the previous
criteria, but might be vulnerable to a future attack. See § 1.9.

The complex multiplication and random curves method require extensive
computations, including a huge storage space and floating-point multi-
precision computations. As such, they are far too cumbersome to consider
implementing them on a small chip.
They can be replaced by a procedure for curve validation, where the curve
order (provided to the chip in the domain parameters) is validated.

Algorithm 1.7.2 Validation of the domain parameters (E, n, G)

1. check that p is a prime number of the required size.
2. check that a, b, xG, yG ∈ J0, p− 1K.
3. check that ∆ = 4a3 + 27b2 6= 0 (mod p).
4. check that G ∈ E.
5. check that n 6= p
6. check that pe − 1 6≡ 0 (mod n) for e = 1, . . . , B.
7. check that G 6=O and n · G =O in E.
8. check that n is prime.

D1.1 — Review of cryptographic protocols based on elliptic curves 21

Primality checking may be performed using probabilistic algorithms
such as the Miller-Rabin test. If an integer n is composite, then the prob-
ability for a random a ∈ J1, n− 1K that the Miller-Rabin test with base a
returns “prime” is at most 1

4 [DLP93]. Therefore, if at least N/2 bases a are
used, then an attacker sending composite numbers will on average have to
send 4N/2 = 2N numbers n, thus providing N bits of security.
In case a random seed was provided to prove that the parameters were
randomly generated, checking them should obviously be performed in ad-
dition to the previous steps. Using either random or standardized param-
eters is advisable; there exist some attacks reposing on substitution of the
base point G by a malicious point or of the curve E itself by a curve E′ with
the same j-invariant [Vau04].

1.8 Group order computation

Whether an elliptic curve E is suitable for cryptographic purposes depends
only on its group order r. We recall that this group order lies between the
Hasse-Weil bounds (1.2.2). More precisely, we will write

r =
∣∣E(Fp)

∣∣ = p + 1− t, |t| 6 2
√

p. (1.8.1)

The number t is the trace of the Frobenius endomorphism of E: more pre-
cisely, the Frobenius endomorphism ϕ : (x, y) 7−→ (xp, yp) satisfies ϕ2 −
tϕ + p = 0.

Baby step, giant step This algorithm proceeds by picking random ele-
ments xi from the curve and computing the order ri of each xi. Since this or-
der divides r, this is also true of their least common multiple lcm(r1, . . . , rn).
When collecting enough ri, eventually this number will lie inside the
Hasse-Weil bounds and thus be equal to r.
The time complexity of this algorithm is O(p

3
4).

Schoof-Elkies-Atkin algorithm The basic idea of the family of `-adic al-
gorithms is that knowing t` = t (mod `) for sufficiently many prime num-
bers ` is enough to compute t. The number t` is given by the action of the
Frobenius endomorphism on the `-torsion points of E. More precisely, t`
must satisfy:

ϕ2(P)− t` · ϕ(P) + (p (mod `)) · P = O (1.8.2)

for each point P of `-torsion; in other words, the formula for comput-
ing 1.8.2 must be divisible by the polynomial for point multiplication by `.
Trying all possible values for t` gives an algorithm (Schoof, 1985) with time
complexity O(log8 p).
Further improvements due to Elkies and Atkin [BSSC05] give an algorithm
with time complexity O(log6 p) and storage requirement O(log2 p). Al-
though this algorithm is polynomial, it is quite unwieldy; in particular, it

22 ANR Project ECLIPSES — Restricted to ECLIPSES

requires the precomputation of the modular polynomials Φ` (or some other
polynomials generating the same field extensions), the full size of which is
of the order of 30 Mbytes for cryptographic curve sizes.

p-adic algorithms These algorithms compute |E(k)| (mod pn) for n large
enough that the curve size is uniquely determined. Let q = pe be the cardi-
nality of the base field, where the prime number p is the characteristic; all
p-adic algorithms have in common an exponential dependency in p and a
polynomial dependency in e. Therefore, they are best suited for computing
group sizes for binary elliptic curves, that is when p = 2. See [CFA06] for
more details.

Complex multiplication The goal of this algorithm is to generate an el-
liptic curve whose group order is known in advance of expensive compu-
tations, thus limiting the “trial-and-error” part.
An elliptic curve E over k = Fp has a ring of endomorphisms isomorphic to
an order O in a quadratic extension K of Q; knowing O is enough to com-
pute the order of E. Namely, the Frobenius endomorphism ϕ of E over Fp
satisfies ϕ2 − tϕ + p = 0. Therefore, if ϕ′ is the Galois conjugate of ϕ in O,
then we have ϕϕ′ = p and ϕ + ϕ′ = t/2; which means that t is a root of the
Diophantine equation

4p = t2 + D s2, (1.8.3)

where D is the reduced discriminant of K.
We start by choosing a discriminant D such that 1.8.3 has a suitable t as a
solution. The j-invariant of E is then a generator of the Hilbert class field L
of K; more precisely, it is a root of the class polynomial hD of D, which is
a polynomial with integer coefficients. Floating-point computations allow
us to compute exactly HD, and factorizing it over Fp gives a value j(E) ∈
Fp; once j(E) is known, admissible coefficients for E follow by a simple
formula.
The limit of this algorithm lies in the factorization of HD (mod p). This
polynomial is of degree equal to the order of the ideal class group of
the field Q(

√
−D); therefore, we are limited to small class numbers hD

(hD 6 107). The curves produced by this method lie in a strict subset of all
elliptic curves, and it is possible that special attacks on the discrete loga-
rithm exploit this [JMV04], although none is known now. Therefore, when
generating a random curve, it is advisable to check that hD > 107, which is
almost always true.

1.9 Standardized curves

Several sources for standardized curves exist.
The NIST [FIP00] published five prime curves defined over pseudo-
Mersenne prime fields (of size 192, 224, 256, 384 and 521 bits) and ten bi-
nary curves, including five Koblitz curves and five pseudo-randomly gen-

D1.1 — Review of cryptographic protocols based on elliptic curves 23

erated (of size 163, 233, 283, 409 and 571 bits). Of these, the prime curves of
size 256, 384 and 521 are mandated by IPsec.
The SEC group [SEC00] published fifteen prime curves of size 112, 128, 160,
192, 224, 256, 384 and 521 bits (including the NIST curves) over pseudo-
Mersenne prime fields, as well as seventeen binary curves of size 113, 131,
163, 193, 233, 239, 283, 409 and 571 bits; both types include pseudo-random
as well as Koblitz curves.
The Brainpool consortium [The05] published seven curves defined over
prime fields of pseudo-random characteristic (of size 160, 192, 224, 256,
320, 384, 512 bits).

2 Cryptographic protocols based on elliptic curves

Throughout this part, a set of domain parameters (p, E, G, n, h) (see 1.7)
is public and agreed upon. As the protocols are mostly backed by the
ECDLP or ECDH cryptographic problems in the subgroup generated by
the base point G, correct choice of the parameters (as in § 1.5) ensures
that the best known attacks are the generic square-root attacks described
above. Therefore, the expected security of the protocols will be `/2 bits,
where ` = dlog2 ne is the bit size of n.
Table 2 shows the different levels of security and the according bit size of
the subgroup in which computations are processed. The range for p in
ECLIPSES is {160, ..., 384}.

Security level (bits) Subgroup size

80 160
112 224
128 256
192 384
256 512

Table 2.0.1: Levels of security and the according bit size of the subgroup
generated by the base point

We recall the following data about storage size, bandwidth and computa-
tion times:
– a point of E requires a long-term storage size of `, and about 3` short-

term storage size (depending on the curve representation);
– most integer computations will be done either modulo p (for point coor-

dinates) or modulo n (for point multiples), which requires a storage size
of `.

All following protocols are based either on ECDH or ECDLP, except where
noted. In this view, a key pair for a user A is a pair (dA, DA), where dA ∈
J1, n− 1K is the private key, and DA = dA · G is the public key derived
from dA.

24 ANR Project ECLIPSES — Restricted to ECLIPSES

Algorithm 2.0.2 Key pair generation
1. Select random dA ∈ J1, n− 1K; this is A’s private key.
2. Compute DA = dA · G and check that DA is on the curve E.
3. DA is A’s public key.

We see that both dA and DA are of size `. This algorithm requires only one
point multiplication.

Auxiliary functions Some protocols may also require the following aux-
iliary functions:
Hash is a cryptographic hash function with output size of at least ` bits.

According to the value of `, SHA-256, SHA-384 or SHA-512 may be used.
(Enc,Dec) is a symmetric cypher; Enck(m) is the encryption of plaintext m

with key k, and Deck(c) is the decryption of cyphertext c with key k.
KDF is a key derivation function that computes a key for a symmetric

cypher from some seed (usually a point of the elliptic curve); KDF(P, `)
is a key of size ` generated from seed P.

MAC is a message authentication code; MACk(m) is the authentication of
message m with key k.

Sign is a signature function, as described below; SignA(m) is the signature
of message m by user A.

2.1 Digital signature

2.1.1 Schnorr’s protocol

Let m be the message to sign.

Algorithm 2.1.1 Schnorr signature generation
1. Select random k ∈ J1, n− 1K.
2. Compute e = Hash(m ‖ k · G).
3. Compute s = (k− dA · e) (mod n).
4. The signature is (e, s).

Algorithm 2.1.2 Schnorr signature verification
1. Compute R = s · G + e · DA.
2. The signature is valid if e = Hash(m ‖ R).

2.1.2 ECDSA: Elliptic curve digital signature algorithm

The elliptic curve digital signature algorithm (ECDSA) is standardized in
[IEE00, ANS99, FIP00, ISO00]. As for RSA, the sensitive elements as the

D1.1 — Review of cryptographic protocols based on elliptic curves 25

private key might be recovered in a standard straight forward implemen-
tation of ECDSA. A secure implementation will therefore differ from algo-
rithms 2.1.3 and 2.1.4.

Signature generation To sign the message m, an entity A with key pair
(dA, DA) does the following:

Algorithm 2.1.3 ECDSA signature generation
1. Select random k ∈ J1, n− 1K.
2. Compute kG = (x1, y1).
3. Compute r = x1 mod n. If r = 0, then go to step 1.
4. Compute k−1 mod n.
5. Compute e = ` most significant bits of integer Hash(m).
6. Compute s = k−1(e + dAr) mod n. If s = 0 go to step 1.
7. The signature of the message m is the pair (r, s).

As both integers r and s are defined modulo n, the size of the signature
is 2`.
A modification of ECDSA, replacing Hash(m) by Hash(m ‖ r), is as secure
as the discrete logarithm in E under the random oracle model for the hash
function [MLS03].

Signature verification To verify signature (r, s) on m, the entity B obtains
the copy of domain parameters D = (p, E, G, n, h) and the associated public
key DA. B then does the following:

Algorithm 2.1.4 ECDSA signature verification

1. Compute w = s−1 mod n.
2. Compute e = ` most significant bits of integer Hash(m).
3. Compute u1 = ew mod n and u2 = rw mod n.
4. Compute X = (x1, y1) = u1G + u2DA.
5. If X =O then reject the signature. Otherwise compute v = x1 mod n.
6. Accept signature if v = r.

2.1.3 ECGDSA: “German” ECDSA

This algorithm [ISO02] simplifies ECDSA by avoiding inversion of the
ephemeral secret k.

2.1.4 ECKCDSA: “Korean certificate” DSA

This protocol [ISO02] is based on a certificate. In what follows, hcert is the
hash value of a certificate including the signer (A)’s identifier, domain pa-
rameters, and public key dA.

26 ANR Project ECLIPSES — Restricted to ECLIPSES

Algorithm 2.1.5 ECGDSA signature generation
1. Select random k ∈ J1, n− 1K.
2. Compute kG = (x1, y1).
3. Compute r = x1 mod n. If r = 0, then go to step 1.
4. Compute e = Hash(m).
5. Compute s = dA(kr− e) mod n. If s = 0, then go to step 1.
6. The signature of m is the pair (r, s).

Algorithm 2.1.6 ECGDSA signature verification

1. Compute r′ = r−1 mod n.
2. Compute e = Hash(m).
3. Compute h1 = r′e mod n and h2 = r′s mod n.
4. Compute X = (x1, y1) = h1G + h2DA.
5. If X =O then reject the signature. Otherwise compute v = x1 mod n.
6. Accept signature if v = r.

Algorithm 2.1.7 ECKCDSA signature generation
1. Select random k ∈ J1, n− 1K.
2. Compute kG = (x1, y1).
3. Compute r = Hash(x1) mod n. If r = 0, then go to step 1.
4. Compute e = Hash(hcert ‖ m).
5. Compute the integer w = r⊕ e (mod n).
6. Compute s = dA(k− w) mod n. If s = 0, then go to step 1.
7. The signature of m is the pair (r, s).

Algorithm 2.1.8 ECKCDSA signature verification
1. Compute e = Hash(hcert ‖ m).
2. Compute the integer w = r⊕ e (mod n).
3. Compute X = (x1, y1) = wG + sDA.
4. If X = O then reject the signature. Otherwise compute v = Hash(x1)

mod n.
5. Accept signature if v = r.

2.2 Key agreement protocols

2.2.1 ECDH: Elliptic curve Diffie-Hellman

The elliptic curve Diffie-Hellman scheme (ECDH) as specified in [IEE00,
ANS01] derives a shared secret value k between two communication part-
ners A and B using the public and private keys of the entities. The protocol
is presented in algorithm 2.2.1.
In steps 5 and 6, he two communication partners have computed the same
point S on E since S = rARB = rArBG = rBRA. The protocol requires about `
bits to be transferred in each direction.

D1.1 — Review of cryptographic protocols based on elliptic curves 27

Algorithm 2.2.1 ECDH key agreement
1. The two parties first agree on a set of domain parameters (Fp, E, n, h, G).
2. A selects her private key rA as a random value rA ∈ J1, n− 1K and com-

putes her public key RA = rAG.
3. B follows the same steps and computes his public key RB = rBG via the

private key rB ∈ J1, n− 1K.
4. The parties exchange their public keys.
5. A computes S = rARB.
6. B computes S = rBRA.
7. A and B compute the hash value of the x-coordinate of S as the shared

secret k : k = Hash(x(S)).

The point S is only a shared secret: it may have some weak bits and thus
should not be used directly as a key. Instead, a key derivation function
should be used to even out the entropy of the key.
The public keys should belong to the large subgroup of size n. Intentionally
or unintentionally, elements of small order (h or a divisor of h) might be
chosen as public keys. This would quickly disclose the key. The cofactor
DH scheme omits this vulnerability by multiplying with h to obtain K. The
two parties compute K = hrARB and K = hrBRA, respectively. If RB or RB
are of small order then K =O. A test for hRB 6=O and hRA 6=O is necessary.

It should also be noted that the basic ECDH protocol is vulnerable to a sim-
ple “man-in-the-middle” attack. To protect against this, the public keys RA
and RB may be signed by Alice and Bob.
The ECDH protocol, plus some level of key certification, is the basis for all
following key agreement schemes.

2.2.2 ECSTS

Here, KDF is a key derivation function, and Sign is a signature protocol. A
symmetric encryption function E is also used.

Algorithm 2.2.2 ECSTS key agreement
1. A chooses a random rA ∈ J1, n− 1K, and sends RA = rA · G. B does

likewise.
2. Both partners compute the shared secret S = rARB = rBRA and the

shared key k = KDF(S).
3. A sends Enck(SignA(RA ‖ RB)).
4. B sends Enck(SignB(RB ‖ RA)).
5. Both parties decrypt using the shared key k and check signatures.

This protocol needs two rounds of transfer in each direction: ` bits for the
shared secret and then 2` bits for the signature.
It should be noted that the shared key k generated should be separated in
two parts k1 ‖ k2, with the key k1 used to encrypt the signautres in steps 3

28 ANR Project ECLIPSES — Restricted to ECLIPSES

and 4, and the key k2 being the key used after the protocol. Therefore, the
shared secret S should have an entropy of 2` bits.

2.2.3 ECMQV

ECMQV [LMQ+03] adds a layer of protection atop the ECDH protocol
without the extra cost incurred by straightforward signed ECDH variants.
Each entity A is now supposed to own the long-term public-private key
pair (dA, DA = dA · G). Let f : E(k) −→

q
1,
√

n
y

be an “almost surjective”
function (for instance, [LMQ+03] uses f (P) = x(P) (mod 2`/2) + 2`/2).
Then A knows the secret value sA = rA + f (RA)dA (mod n), which is asso-
ciated to the public point SA = sA ·G = RA + f (RA) ·DA. The two partners
can then use the shared secret sASB = sBSA = sAsBG.

Algorithm 2.2.3 ECMQV key agreement
1. A chooses a random rA ∈ J0, n− 1K, computes RA = rA · G and sends it

to B.
2. B chooses a random rB ∈ J0, n− 1K, computes RB = rB · G and sends it

to A.
3. A computes the secret value sA = (rA + f (RA)dA) (mod n) and the

public value SB = RB + f (RB) · DB.
4. B computes the secret value sB = (rB + f (RB)dB) (mod n) and the pub-

lic value SA = RA + f (RA) · DA.
5. The shared secret is K = sA · SB = sB · SA.

The bandwith need of this protocol is the same as that of the ECDH pro-
tocol. The size of the destination set of the function f is

√
n, which is in

accord with the current hardness of the discrete logarithm problem. More-
over, having f (P) of size about half that of n allows us to perform the ex-
ponentiation in the computation of SA, SB as only a half-exponentiation.
Thus, the only extra cost for this protocol (comparated to ECDH) is one
half-exponentiation for each partner.
Some impersonation, unknown key share, and man-in-the-middle attacks
may be performed against MQV. For this reason, MQV has been dropped
from the NSA Suite B protocol list.

2.2.4 ECHMQV: Hashed MQV

This protocol, described in [Kra05] is the same as the basic MQV proto-
col, except that the function f used to compute the secrets is now a hash
function. This solves some of the weaknesses of MQV.
In the random oracle model, HMQV achieves weak forward secrecy (that
is, the current secret is not threatened by possible future public key disclo-
sure) and is secure against impersonation and temporary secret disclosure.

D1.1 — Review of cryptographic protocols based on elliptic curves 29

2.2.5 ECKMQV: Korean MQV

This protocol is described in [JKL06]. It achieves the same security features
as HMQV, with slightly less assumptions about the hash function involved;
however, the bandwidth is twice that of ECDH.

Algorithm 2.2.4 ECKMQV key agreement
1. A chooses a random rA ∈ J1, n− 1K and sends RA = rA · G; B does like-

wise.
2. A computes kA = Hash(dA · RB) and sends tA =MACkA(A ‖ B ‖ RA).
3. A computes kB = Hash(rA · DB) (kB 6= kA) and checks that tB =

MACkB(B ‖ A ‖ RB).
4. The shared secret is Hash(rA · RB)⊕Hash(dA · DB).

2.2.6 FHMQV: Fully Hashed MQV

This protocol [SEVB09], based on HMQV, protects against consequences of
leakage of the secret exponent by replacing f (RA) and f (RB) by Hash(RA ‖
RB ‖ A ‖ B).

2.3 Key /data encapsulation

While asymmetric cryptography has theoretic advantages, its implementa-
tion is quite slow and it is therefore ill-fitted to long message encryption.
Therefore it is advisable to split its use in two parts:
– a key encapsulation mechanism (KEM), in which the public key DB of the re-

ceiver is used to compute a key K for a symmetric encryption algorithm;
the key K is then sent to B in an encapsulated manner that only he can
decypher;

– a data encapsulation mechanism (DEM) in which the symmetric key K and
a symmetric encryption scheme (Enc,Dec) are used to convey the data
itself.

The key K should be of sufficient size to ensure resistance of the symmetric
encryption scheme.
As the only part of the KEM/DEM scheme concerned about elliptic curves
is the KEM, this is the only part that will be discussed here.

2.3.1 Elliptic curve integrated encryption system (ECIES-KEM)

The elliptic curve integrated encryption system (ECIES) is described
in [AYZ98, ANS01, IEE00, Sho01, BSSC05].
After execution of encapsulation, A may then immediately send the
cyphertext c = EncK(m) to B.
To prevent against adaptive chosen-cyphertext attacks, the secret key K
should actually be split in two parts k1 ‖ k2 = KDF(S ‖ RA, `), with k1 being

30 ANR Project ECLIPSES — Restricted to ECLIPSES

Algorithm 2.3.1 ECIES-KEM encapsulation
1. The sender A chooses a random rA ∈ J1, p− 1K.
2. A computes RA = rA · G.
3. A computes S = rA · DB.
4. A computes K = KDF(S ‖ RA, `).
5. The encapsulation is RA; the secret key is K.

the symmetric key used for sending the message, and k2 used for authenti-
cating it by sending MACk2(c) with the cyphertext.

Algorithm 2.3.2 ECIES-KEM decapsulation
1. B receives the encapsulation RA
2. B computes SB = dB · RA.
3. The secret key is K = KDF(SB ‖ RA).

We have SB = dB · RA = dBrA · G = S, and therefore A and B both compute
the same key K. Therefore, B is able to recover the plaintext m = DecK(c).
This scheme is resistant to chosen cyphertext attack under the gap Diffie-
Hellman problem on E [pse08].

Variation Instead of using the point T, we can also restrict ourselves to
the x-coordinate of the point as done in various standards. This causes
the problem that (U, c, r) and (−U, c, r) are valid ciphertexts for the same
message as the x- coordinate of U and −U is the same. The problem is
called benign malleability and the scheme is then formally not secure against
adaptive chosen ciphertexts in the complete sense.
To avoid a small subgroup one can choose to apply KDF to hT. If T is point
of small order h, the product will evaluate to the point at infinity.

2.3.2 PSEC-KEM

This scheme is described in [pse08]. It is designed to reject improperly
formed cyphertexts. It is based on the plain ECIES-KEM and may actually
use it as a subroutine in its implementation. However, the decapsulation
algorithm is slower than ECIES by one curve multiplication, and the band-
width required for KEM is twice that of ECIES.
Here KDFi(P, `) stands for KDF(i32 ‖ P, `), where i32 is the 32-bit integer i.

This scheme is resistant to chosen cyphertext attack under the computa-
tional Diffie-Hellman problem [pse08].

3 Crypto-processor functionalities state-of-the-art

We list the operations required to implement the previously presented
cryptographic algorithms. We furthermore give an overview of the existing

D1.1 — Review of cryptographic protocols based on elliptic curves 31

Algorithm 2.3.3 PSEC-KEM encapsulation
1. Select a random seed ρ.
2. Set (rA ‖ K) = KDF0(ρ), where rA is an integer (of size `) reduced mod-

ulo n.
3. Compute RA = rA · G.
4. Compute S = rA · DB.
5. Compute T = ρ⊕KDF1(S ‖ RA).
6. The key is K; the encapsulation is (RA, T).

Algorithm 2.3.4 PSEC-KEM decapsulation
1. Receive the encapsulation as (RA, T).
2. Compute S = dB · RA.
3. Compute ρ = T ⊕KDF1(S ‖ RA).
4. Compute (rA ‖ K) = KDF0(ρ).
5. Check rA · G = RA.
6. The encapsulated key is K.

crypto-coprocessors used to perform public key algorithms such as RSA
and those based on elliptic curves.

3.1 Operations needed

As most of the previous protocols use the same basic functions, a summary
of recommended cryptographic services and related base functions is pre-
sented in figure 3.1.1.

Figure 3.1.1 Required services and functions

Key pair
generation

Validation

Key agreement

Signature

Encapsulation

Primality checking

Point multiplication

Point arithmetic

MAC

KDF

Symmetric cipher

Hash function Random number generator

Modular exponentiation

Modular arithmetic

Point arithmetic operations include point checking (testing if a point be-
longs to the curve), addition, duplication, conversion between various co-
ordinate system, compression/decompression, multiplication, and com-

32 ANR Project ECLIPSES — Restricted to ECLIPSES

parison. In particular, random point generation is not used in any of the
protocols above.
Modular arithmetic operations include modular reduction, addition, sub-
traction, complement, multiplication, short multiplication, squaring, inver-
sion, exponentiation, and square root.

3.2 Co-processors and operations needed

The minima resources in terms of software or/and hardware to be able
to reach acceptable performances for elliptic curve algorithms are listed
below:

1. A random number generator

2. Modular multiplication, modular addition and modular subtraction

3. Hash function (Rotation and logical operation on 32 bits)

4. Modular exponentiation

According to the crypto-coprocessor in the component, an integer divi-
sion and a reduction could be also necessary. For some chips, the crypto-
coprocessor embeds all these operations but for some they will be coded in
part by the CPU.

3.3 Characteristics and functionalities

In a component, crypto-coprocessors are peripherals; they could have their
own clock. They could be programmed in a specific language.

1. The modular exponentiation Md mod n thanks to the operation XY
mod n

2. The scalar multiplication Q = dP thanks to modular addition, sub-
traction and multiplication over Fp or F2n

Moreover, most cryptoprocessors offer arithmetic and boolean operations
with large numbers that enable accelerating long data transfers when com-
pared to classical 8-bit or 16-bit CPU process.
However, none of the crypto-coprocessors used in smart cards embeds
full hardware modular exponentiation or scalar multiplication. Regard-
ing physical behaviour, the power consumption and electromagnetic/radio
frequency emanation is very important compared to that of the CPU.

3.4 Operand constraints

According to the hardware design of the crypto-coprocessor, the operands
are handled in various ways. A first kind of architecture is the RAM or
EEPROM pointers access. In this case, to manage the operands the crypto-
coprocessor user has to handle specific memory addresses and data size via
specific function registers. The RAM is shared by the crypto-coprocessor

D1.1 — Review of cryptographic protocols based on elliptic curves 33

and the CPU and sometimes a faster RAM access is implemented at hard-
ware level. The operands sizes are limited to the RAM size.
A second kind of design is characterized by internal registers only dedi-
cated to the crypto-coprocessor operands. If the operands exceed the max-
imum value handled by these registers, then the available hardware oper-
ation cannot be used anymore. A mix of the two previous architectures is
conceivable and is defined by operands mapped at RAM fixed addresses.
The size of the operands is limited by the interval free between each fixed
address.

3.5 Modular multiplication

Several kind of modular multiplications are available in the various crypto-
coprocessors. Indeed, Quisquater, Montgomery, Sedlack or ZDN modular
multiplications are available. For details the reader could have a look at
following references [Dhe98, NM96] and [Sed88] (XXX very old references,
what is the state-of-the-art here?, D98 is only a master thesis, is there a
conference publication?)

3.6 Other functionalities

For security and performance reasons, CPU and crypto-coprocessors could
work in parallel. Operations on large numbers other than modular mul-
tiplication might be available. Modular inversion, addition, subtraction,
logical operations are often present. As elliptic curves become popular, the
crypto-coprocessor might embed specific operations over F2p and modular
addition and subtraction over the integers. However, point addition, point
doubling, scalar multiplication or modular exponentiations are not present
in the current crypto-coprocessors.

34 ANR Project ECLIPSES — Restricted to ECLIPSES

References

[ANS99] ANSI X9.62. Public Key Cryptography for the Financial Services
Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA),
American National Standards Institute edition, 1999.

[ANS01] ANSI X9.63. Public Key Cryptography For The Financial Ser-
vices Industry: Key Agreement and Key Transport Using Ellip-
tic Curve Cryptography, American National Standards Institute
edition, January 2001. http://grouper.ieee.org/groups/

1363/private/x9-63-01-08-99.pdf.

[AYZ98] Michel Abdalla, Mihir Bellare Y, and Phillip Rogaway Z. Sub-
mission to IEEE P1363a. DHAES: An encryption scheme based
on the diffie-hellman problem, 1998.

[BBJ+08] Daniel Bernstein, Peter Birkner, Marc Joye, Tanja Lange, and
Christiane Peters. Twisted edwards curves. In Serge Vaude-
nay, editor, Progress in Cryptology – AFRICACRYPT 2008, vol-
ume 5023 of Lecture Notes in Computer Science, pages 389–405.
Springer Berlin / Heidelberg, 2008. 10.1007/978-3-540-68164-
9_26.

[BBLP07] D.J. Bernstein, P. Birkner, T. Lange, and C. Peters. Optimizing
double-base elliptic-curve single-scalar multiplication. In Pro-
ceedings of the cryptology 8th international conference on Progress in
cryptology, pages 167–182. Springer-Verlag, 2007.

[BGV94] A. Bosselaers, R. Govaerts, and J. Vandewalle. Comparison of
three modular reduction functions. In Advances in Cryptology–
CRYPTO’93, pages 175–186. Springer, 1994.

[BHLM01] M. Brown, D. Hankerson, J. López, and A. Menezes. Software
implementation of the NIST elliptic curves over prime fields.
Topics in Cryptology–CT-RSA 2001, pages 250–265, 2001.

[BJ03] E. Brier and M. Joye. Fast point multiplication on elliptic curves
through isogenies. Applied Algebra, Algebraic Algorithms and
Error-Correcting Codes, pages 603–603, 2003.

[BKM09] J.W. Bos, M.E. Kaihara, and P.L. Montgomery. Pollard rho on
the PlayStation 3. SHARCS’09 Special-purpose Hardware for At-
tacking Cryptographic Systems, page 35, 2009.

[BL10] D. J. Bernstein and T. Lange. Explicit formula database. http:
//www.hyperelliptic.org, 2010.

[BSSC05] I. Blake, G. Seroussi, N. Smart, and J. W. S. Cassels. Advances in
Elliptic Curve Cryptography (London Mathematical Society Lecture
Note Series). Cambridge University Press, New York, NY, USA,
2005.

[CFA06] Henri Cohen, Gerhard Frey, and Roberto. Avanzi. Handbook of
elliptic and hyperelliptic curve cryptography / [editors], Henri Cohen,

D1.1 — Review of cryptographic protocols based on elliptic curves 35

Gerhard Frey ; [authors], Roberto Avanzi ... [et al.]. Chapman &
Hall/CRC, Boca Raton :, 2006.

[Cop93] D. Coppersmith. Modifications to the number field sieve. Jour-
nal of Cryptology, 6(3):169–180, 1993.

[Dhe98] J.F. Dhem. Design of an efficient public key cryptographic public
key for RISC based architecture. PhD thesis, Faculté des sciences
appliquées laboratoire microélectronique, May 1998.

[Die03] C. Diem. The GHS attack in odd characteristic. JOURNAL-
RAMANUJAN MATHEMATICAL SOCIETY, 18(1):1–32, 2003.

[DIM08] V. Dimitrov, L. Imbert, and P.K. Mishra. The double-base num-
ber system and its application to elliptic curve cryptography.
Mathematics of Computation, 77(262):1075–1104, 2008.

[DLP93] I. Damgård, P. Landrock, and C. Pomerance. Average case error
estimates for the strong probable prime test. Math. Comp., pages
177–194, 1993.

[EG02] A. Enge and P. Gaudry. A general framework for subexponen-
tial discrete logarithm algorithms. Acta Arith, 102(1):83–103,
2002.

[FIP00] FIPS PUB 186-2: Digital Signature Standard (DSS), National In-
stitute of Standards and Technology edition, January 2000.

[GHS02] P. Gaudry, F. Hess, and N.P. Smart. Constructive and destruc-
tive facets of Weil descent on elliptic curves. Journal of Cryptol-
ogy, 15(1):19–46, 2002.

[GL92] S. Gao and H.W. Lenstra. Optimal normal bases. Designs, Codes
and Cryptography, 2(4):315–323, 1992.

[Gor93] D.M. Gordon. Discrete Logarithms in GF(P) Using the Number
Field Sieve. SIAM Journal on Discrete Mathematics, 6(1):124–138,
1993.

[IEE00] IEEE 1363. Standard Specification for Public Key Cryptography, the
institute of electrical and electronics engineers, inc. (ieee) p1363
edition, 2000.

[ISO00] International Standard 15946-2: Information Technology — Secu-
rity Techniques — Cryptographic techniques based on elliptic curves
— Part 2: International Standard 15946-2: Information Technology
— Security Techniques — Cryptographic techniques based on ellip-
tic curves — Part 2: Digital Signatures, international standards
organization edition, 2000.

[ISO02] Iso-iec 15946-2. information technology — security techniques
— cryptographic signatures based on elliptic curves — part 2:
digital signatures. Technical report, 2002.

[JKL06] I. Jeong, J. Kwon, and D. Lee. A Diffie-Hellman key exchange
protocol without random oracles. Cryptology and Network Secu-
rity, pages 37–54, 2006.

36 ANR Project ECLIPSES — Restricted to ECLIPSES

[JMV04] D. Jao, S.D. Miller, and R. Venkatesan. Ramanujan graphs and
the random reducibility of discrete log on isogenous elliptic
curves. 2004.

[KMV00] N. Koblitz, A. Menezes, and S. Vanstone. The state of elliptic
curve cryptography. Designs, Codes and Cryptography, 19(2):173–
193, 2000.

[Kra05] H. Krawczyk. HMQV: A high-performance secure Diffie-
Hellman protocol. In Advances in Cryptology–CRYPTO 2005,
pages 546–566. Springer, 2005.

[LMQ+03] L. Law, A. Menezes, M. Qu, J. Solinas, and S. Vanstone. An effi-
cient protocol for authenticated key agreement. Designs, Codes
and Cryptography, 28(2):119–134, 2003.

[LS01] P. Liardet and N. Smart. Preventing SPA/DPA in ECC systems
using the Jacobi form. In Cryptographic Hardware and Embedded
Systems–CHES 2001, pages 391–401. Springer, 2001.

[Men08] A. Menezes. The elliptic curve discrete logarithm problem:
State of the art. Advances in Information and Computer Security,
pages 218–218, 2008.

[MLS03] J. Malone-Lee and N. Smart. Modifications of ECDSA. In Se-
lected Areas in Cryptography, pages 1–12. Springer, 2003.

[Mon85] P.L. Montgomery. Modular multiplication without trial divi-
sion. Mathematics of computation, 44(170):519–521, 1985.

[Mon87] P.L. Montgomery. Speeding the Pollard and elliptic curve meth-
ods of factorization. Mathematics of computation, 48(177):243–
264, 1987.

[MW00] U.M. Maurer and S. Wolf. The Diffie–Hellman Protocol. De-
signs, Codes and Cryptography, 19(2):147–171, 2000.

[NM96] D. Naccache and D. M’Raihi. Arithmetic co-processors for
public-key cryptography: The state of the art. IEEE Micro, 16(3),
1996.

[NSA08] NSA. Mathematical routines for the nist prime elliptic
curves. http://www.nsa.gov/ia/_files/nist-routines.

pdf, 2008.

[pse08] PSEC-KEM specification (version 2.2). 2008.

[Qui90] J.J. Quisquater. Fast modular exponentiation without division.
Rump session of EUROCRYPT, 90, 1990.

[SEC00] Sec 2: recommended elliptic curve parameters. Technical re-
port, The SEC group, 2000.

[Sed88] Holger Sedlak. The RSA cryptography processor. In EURO-
CRYPT’87: Proceedings of the 6th annual international conference
on Theory and application of cryptographic techniques, pages 95–
105, Berlin, Heidelberg, 1988. Springer-Verlag.

D1.1 — Review of cryptographic protocols based on elliptic curves 37

[SEVB09] A. Sarr, P. Elbaz-Vincent, and J.C. Bajard. A Secure and Efficient
Authenticated Diffie-Hellman Protocol. 2009.

[Sho01] Victor Shoup. A proposal for an iso standard for public key
encryption (version 2.0), 2001.

[Sol99] Jerome A. Solinas. Generalized mersenne numbers. Technical
Report CORR 99–39, University of Waterloo, 1999.

[Thé03] N. Thériault. Index calculus attack for hyperelliptic curves of
small genus. Advances in Cryptology-ASIACRYPT 2003, pages
75–92, 2003.

[The05] The Brainpool consortium. ECC Brainpool Standard Curves
and Curve Generation v1.0. http://www.ecc-brainpool.

org/download/Domain-parameters.pdf, 2005.

[Vau04] S. Vaudenay. Digital signature schemes with domain parame-
ters: Yet another parameter issue in ECDSA. In In Proceedings
of the 9th Australasian Conference on Information Security and Pri-
vacy. Citeseer, 2004.

